
1/22

Optimizations and Extensions for Weighted CFG Parsers

Richard Mörbitz

Chair for foundations of programming
Institute for theoretical computer science

TU Dresden

2021-06-21

2/22

Outline

Pruning
Pruning for CKY parsing
Pruning for deductive parsing

k-best parsing

A*-parsing

3/22

Pruning

I During CKY or deductive parsing many items are explored which are not part of
the best derivation

I Idea: avoid items that are not part of the best derivation to speed up parsing

I Problem: How can we know these items in advance?

I Practical solution: Use simple methods but take the risk of finding suboptimal
derivation.

3/22

Pruning

I During CKY or deductive parsing many items are explored which are not part of
the best derivation

I Idea: avoid items that are not part of the best derivation to speed up parsing

I Problem: How can we know these items in advance?

I Practical solution: Use simple methods but take the risk of finding suboptimal
derivation.

3/22

Pruning

I During CKY or deductive parsing many items are explored which are not part of
the best derivation

I Idea: avoid items that are not part of the best derivation to speed up parsing

I Problem: How can we know these items in advance?

I Practical solution: Use simple methods but take the risk of finding suboptimal
derivation.

3/22

Pruning

I During CKY or deductive parsing many items are explored which are not part of
the best derivation

I Idea: avoid items that are not part of the best derivation to speed up parsing

I Problem: How can we know these items in advance?

I Practical solution: Use simple methods but take the risk of finding suboptimal
derivation.

4/22

Pruning for CKY parsing

Consider this slightly modified (red) version of the CKY algorithm:

Require: weighted binary cfg (N, Σ,P, S , µ), word t1 . . . tn where t1, . . . , tn ∈ Σ
Ensure: family (ci,j,A ∈ R | 0 ≤ i < j ≤ n,A ∈ N) such that, for all i , j ,A,

ci,j,A = max{µ(d) | d ∈ DA
G (ti+1 . . . tj)} ∪ {0}

1: function cky(P, µ, t1 . . . tn)
2: (ci,j,A := 0 | 0 ≤ i < j ≤ n,A ∈ N)
3: for 1 ≤ i ≤ n do
4: for A→ ti ∈ P do
5: ci−1,i,A := max{ci−1,i,A, µ(A→ ti)}
6: for 2 ≤ r ≤ n do
7: for 0 ≤ i ≤ n − r do
8: j := i + r
9: for m ∈ {i + 1, i + 2, . . . , j − 1} do

10: for B,C ∈ N do
11: for A ∈ N such that A→ BC ∈ R do
12: ci,j,A := max{ci,j,A, µ(A→ BC) · ci,m,B · cm,j,C}
13: return c

5/22

Pruning for CKY parsing
An abstract “pruning operation“ on the chart can be included (lines 6, 15).
We speed up the algorithm by skipping the application of cfg rules to chart cells with 0
probability (line 12).

Require: weighted binary cfg (N, Σ,P, S , µ), word t1 . . . tn where t1, . . . , tn ∈ Σ
Ensure: family (ci,j,A ∈ R | 0 ≤ i < j ≤ n,A ∈ N) such that, for all i , j ,A, ci,j,A ≤ max{µ(d) | d ∈

DA
G (ti+1 . . . tj)} ∪ {0}

1: function cky(P, µ, t1 . . . tn)
2: (ci,j,A := 0 | 0 ≤ i < j ≤ n,A ∈ N)
3: for 1 ≤ i ≤ n do
4: for A→ ti ∈ P do
5: ci−1,i,A := max{ci−1,i,A, µ(A→ ti)}
6: (ci−1,i,A | A ∈ N) := prune((ci−1,i,A | A ∈ N))

7: for 2 ≤ r ≤ n do
8: for 0 ≤ i ≤ n − r do
9: j := i + r

10: for m ∈ {i + 1, i + 2, . . . , j − 1} do
11: for B,C ∈ N do
12: if ci,m,B = 0 or cm,j,C = 0 then continue

13: for A ∈ N such that A→ BC ∈ R do
14: ci,j,A := max{ci,j,A, µ(A→ BC) · ci,m,B · cm,j,C}
15: (ci,j,A | A ∈ N) := prune((ci,j,A | A ∈ N))

16: return c

6/22

Pruning for CKY parsing
How can the pruning operation be implemented?

I Threshold beam (set all cell probabilities to 0 if worse than θ · best cell probability)

Require: family c = (ci,j,A ∈ R | A ∈ N), threshold θ ∈ [0, 1]
Ensure: family (ci,j,A ∈ R | A ∈ N)

1: function prune(c)
2: m = maxA∈N{ci,j,A | A ∈ N}
3: for A ∈ N do
4: if ci,j,A < m · θ then
5: ci,j,A := 0

6: return c

I Fixed-sized beam (set all but n best cell probabilities to 0)

Require: family c = (ci,j,A ∈ R | A ∈ N), size 1 ≤ n ≤ |N|
Ensure: family (ci,j,A ∈ R | A ∈ N)

1: function prune(c)
2: [s1, . . . , sn] = n-best{ci,j,A | A ∈ N}
3: for A ∈ N do
4: if ci,j,A < sn then
5: ci,j,A := 0

6: return c

n-best(C) returns list of the n highest values in C in descending order

6/22

Pruning for CKY parsing
How can the pruning operation be implemented?

I Threshold beam (set all cell probabilities to 0 if worse than θ · best cell probability)

Require: family c = (ci,j,A ∈ R | A ∈ N), threshold θ ∈ [0, 1]
Ensure: family (ci,j,A ∈ R | A ∈ N)

1: function prune(c)
2: m = maxA∈N{ci,j,A | A ∈ N}
3: for A ∈ N do
4: if ci,j,A < m · θ then
5: ci,j,A := 0

6: return c

I Fixed-sized beam (set all but n best cell probabilities to 0)

Require: family c = (ci,j,A ∈ R | A ∈ N), size 1 ≤ n ≤ |N|
Ensure: family (ci,j,A ∈ R | A ∈ N)

1: function prune(c)
2: [s1, . . . , sn] = n-best{ci,j,A | A ∈ N}
3: for A ∈ N do
4: if ci,j,A < sn then
5: ci,j,A := 0

6: return c

n-best(C) returns list of the n highest values in C in descending order

7/22

Pruning for CKY parsing– implementation considerations

I No changes to data structures required.
I More speed-ups might be obtained by not adding items to chart which for sure

would later be pruned:
I Threshold beam: store weight m of currently best item. If new item has weight m

below θ ·m, it is save to prune immediately.
I Fixed-size beam: store weights of the n best items. If the weight of new is below of

worst item, prune immediately.

8/22

Pruning for deductive parsing

Original algorithm for deductive parsing.

Require: weighted binary cfg (N, Σ,P, S , µ), word t1 . . . tn where t1, . . . , tn ∈ Σ
Ensure: family (ci,j,A : R | 0 ≤ i < j ≤ n,A ∈ N) such that

ci,j,A = max{µ(d) | d ∈ DA
G (ti+1 . . . tj)} ∪ {0}

1: function deduce(P, µ, t1 . . . tn)
2: queue := {(i − 1,A, i , µ(A→ ti)) | 1 ≤ i ≤ n,A→ ti ∈ P}
3: (ci,j,A := 0 | 0 ≤ i < j ≤ n,A ∈ N)
4: while queue 6= ∅ do
5: (i ,A, j ,w) := argmax(i,A,j,w)∈queue w
6: queue \= {(i ,A, j ,w)}
7: if ci,j,A = 0 then
8: ci,j,A := w
9: queue ∪= {(i ,A′, j ′, µ(A′ → AC) · w · cj,j′,C) | A′ → AC ∈ P}

10: queue ∪= {(i ′,A′, j , µ(A′ → BA) · ci′,i,B · w) | A′ → BA ∈ P}
11: queue ∪= {(i ,A′, j , µ(A′ → A) · w) | A′ → A ∈ P}
12: return c

9/22

Pruning for deductive parsing

Pruning operation on queue is added.

Require: weighted binary cfg (N, Σ,P, S , µ), word t1 . . . tn where t1, . . . , tn ∈ Σ
Ensure: family (ci,j,A : R | 0 ≤ i < j ≤ n,A ∈ N) such that

ci,j,A ≤ max{µ(d) | d ∈ DA
G (ti+1 . . . tj)} ∪ {0}

1: function deduce(P, µ, t1 . . . tn)
2: queue := {(i − 1,A, i , µ(A→ ti)) | 1 ≤ i ≤ n,A→ ti ∈ P}
3: (ci,j,A := 0 | 0 ≤ i < j ≤ n,A ∈ N)
4: while queue 6= ∅ do
5: (i ,A, j ,w) := argmax(i,A,j,w)∈queue w
6: queue \= {(i ,A, j ,w)}
7: if ci,j,A = 0 then
8: ci,j,A := w
9: queue ∪= {(i ,A′, j ′, µ(A′ → AC) · w · cj,j′,C) | A′ → AC ∈ P}

10: queue ∪= {(i ′,A′, j , µ(A′ → BA) · ci′,i,B · w) | A′ → BA ∈ P}
11: queue ∪= {(i ,A′, j , µ(A′ → A) · w) | A′ → A ∈ P}
12: prune(queue)

13: return c

10/22

Pruning for deductive parsing

Again two options for pruning:

I Threshold beam (remove each queue item if its probability is worse than

θ · prob. of best queue item)

Require: set queue ⊆ N× N × N× R, threshold θ ∈ [0, 1]
Ensure: set queue′ ⊆ N× N × N× R
1: function prune(queue)
2: m = max(i,A,j,w)∈queue w
3: return {(i ,A, j ,w) ∈ queue | w > θ ·m}

I Fixed-sized beam (only keep the n most probable queue items)

Require: set queue ⊆ N× N × N× R, size n ∈ N
Ensure: set queue′ ⊆ N× N × N× R
1: function prune(queue)
2: [i1, . . . , in] = n-best(queue) w.r.t. 4th tuple component
3: return {i1, . . . , in}

10/22

Pruning for deductive parsing

Again two options for pruning:

I Threshold beam (remove each queue item if its probability is worse than

θ · prob. of best queue item)

Require: set queue ⊆ N× N × N× R, threshold θ ∈ [0, 1]
Ensure: set queue′ ⊆ N× N × N× R
1: function prune(queue)
2: m = max(i,A,j,w)∈queue w
3: return {(i ,A, j ,w) ∈ queue | w > θ ·m}

I Fixed-sized beam (only keep the n most probable queue items)

Require: set queue ⊆ N× N × N× R, size n ∈ N
Ensure: set queue′ ⊆ N× N × N× R
1: function prune(queue)
2: [i1, . . . , in] = n-best(queue) w.r.t. 4th tuple component
3: return {i1, . . . , in}

11/22

Pruning for deductive parsing – implementation considerations

I Best implement queue as Min-max heap [Atk+86], because access to best and
worst elements is required.

I Again, don’t add items to queue if they would be pruned immediately.

I Alternatively, one can shrink the queue only occasionally and not in each iteration
of the main loop.

I Beware: Items for large spans are often more probable than items for small spans.
Risk of pruning “good” large items in favour of “bad” small items.

(Solution: see A*-star parsing below)

11/22

Pruning for deductive parsing – implementation considerations

I Best implement queue as Min-max heap [Atk+86], because access to best and
worst elements is required.

I Again, don’t add items to queue if they would be pruned immediately.

I Alternatively, one can shrink the queue only occasionally and not in each iteration
of the main loop.

I Beware: Items for large spans are often more probable than items for small spans.
Risk of pruning “good” large items in favour of “bad” small items.

(Solution: see A*-star parsing below)

11/22

Pruning for deductive parsing – implementation considerations

I Best implement queue as Min-max heap [Atk+86], because access to best and
worst elements is required.

I Again, don’t add items to queue if they would be pruned immediately.

I Alternatively, one can shrink the queue only occasionally and not in each iteration
of the main loop.

I Beware: Items for large spans are often more probable than items for small spans.
Risk of pruning “good” large items in favour of “bad” small items.

(Solution: see A*-star parsing below)

11/22

Pruning for deductive parsing – implementation considerations

I Best implement queue as Min-max heap [Atk+86], because access to best and
worst elements is required.

I Again, don’t add items to queue if they would be pruned immediately.

I Alternatively, one can shrink the queue only occasionally and not in each iteration
of the main loop.

I Beware: Items for large spans are often more probable than items for small spans.
Risk of pruning “good” large items in favour of “bad” small items.

(Solution: see A*-star parsing below)

11/22

Pruning for deductive parsing – implementation considerations

I Best implement queue as Min-max heap [Atk+86], because access to best and
worst elements is required.

I Again, don’t add items to queue if they would be pruned immediately.

I Alternatively, one can shrink the queue only occasionally and not in each iteration
of the main loop.

I Beware: Items for large spans are often more probable than items for small spans.
Risk of pruning “good” large items in favour of “bad” small items.
(Solution: see A*-star parsing below)

12/22

Outline

Pruning
Pruning for CKY parsing
Pruning for deductive parsing

k-best parsing

A*-parsing

13/22

k-best parsing

I Problem: syntactic ambiguity, e.g., “She saw the astronomer with the telescope.”

I “with the telescope” modifies “saw”
I “with the telescope” modifies “the astronomer“

Each reading has a different parse tree.

I Solution: return multiple parse trees per sentence.

I Goal: given a sentence w , a PCFG G , and a positive integer k, find the k most
probable derivations of G for w

13/22

k-best parsing

I Problem: syntactic ambiguity, e.g., “She saw the astronomer with the telescope.”
I “with the telescope” modifies “saw”

I “with the telescope” modifies “the astronomer“

Each reading has a different parse tree.

I Solution: return multiple parse trees per sentence.

I Goal: given a sentence w , a PCFG G , and a positive integer k, find the k most
probable derivations of G for w

13/22

k-best parsing

I Problem: syntactic ambiguity, e.g., “She saw the astronomer with the telescope.”
I “with the telescope” modifies “saw”
I “with the telescope” modifies “the astronomer“

Each reading has a different parse tree.

I Solution: return multiple parse trees per sentence.

I Goal: given a sentence w , a PCFG G , and a positive integer k, find the k most
probable derivations of G for w

13/22

k-best parsing

I Problem: syntactic ambiguity, e.g., “She saw the astronomer with the telescope.”
I “with the telescope” modifies “saw”
I “with the telescope” modifies “the astronomer“

Each reading has a different parse tree.

I Solution: return multiple parse trees per sentence.

I Goal: given a sentence w , a PCFG G , and a positive integer k, find the k most
probable derivations of G for w

13/22

k-best parsing

I Problem: syntactic ambiguity, e.g., “She saw the astronomer with the telescope.”
I “with the telescope” modifies “saw”
I “with the telescope” modifies “the astronomer“

Each reading has a different parse tree.

I Solution: return multiple parse trees per sentence.

I Goal: given a sentence w , a PCFG G , and a positive integer k, find the k most
probable derivations of G for w

13/22

k-best parsing

I Problem: syntactic ambiguity, e.g., “She saw the astronomer with the telescope.”
I “with the telescope” modifies “saw”
I “with the telescope” modifies “the astronomer“

Each reading has a different parse tree.

I Solution: return multiple parse trees per sentence.

I Goal: given a sentence w , a PCFG G , and a positive integer k, find the k most
probable derivations of G for w

14/22

k-best parsing – näıve algorithm

Similar to CKY algorithm. Uses functions:
sort(c) – sorts a set c of tuples (according to 2nd component)
take(k , `) – returns first k elements of list `

Require: k ∈ N, weighted binary CFG (N, Σ, S ,R, µ), word t1 · · · tn
Ensure: k most probable parse trees of PCFG for t1 · · · tn
1: function kbest(k, R, µ, t1, . . . , tn)
2: b[i , j ,A] := [] for each cell (i , j ,A)
3: for i ∈ {0, . . . , n − 1} and A ∈ N do
4: c := {(A(ti+1),w) | A→ ti+1 in R,w = µ(A→ ti+1)}
5: b[i , i + 1,A] = take(k, sort(c))

6: for z ∈ {2, . . . , n} do
7: for i ∈ {0, . . . , n − z} do
8: j := i + z
9: for A ∈ N do

10: c := {(A(d1, d2),w) | A→ BC in R,m ∈ {i + 1, . . . , j − 1},
(d1,w1) ∈ b[i ,m,B], (d2,w2) ∈ b[m, j ,C],
w = µ(A→ BC) · w1 · w2}

11: b[i , j ,A] = take(k, sort(c))

12: return b[0, n, S]

15/22

k-best parsing – implementation of merging

10: c := {(A(d1, d2),w) | A→ BC ,m ∈ {i + 1, . . . , j − 1},
(d1,w1) ∈ b[i ,m,B], (d2,w2) ∈ b[m, j ,C],
w = µ(A→ BC) · w1 · w2}

11: b[i , j ,A] = take(k, sort(c))

can be implemented as

10: b[i , j ,A] := []
11: for m ∈ {i + 1, . . . , j − 1} do
12: for A→ BC in R do
13: c := {(A(d1, d2),w) | (d1,w1) ∈ b[i ,m,B], (d2,w2) ∈ b[m, j ,C],

w = µ(A→ BC) · w1 · w2}
14: b[i , j ,A] := mergeAndTakeK(k, b[i , j ,A], c)

here mergeAndTakeK(k , `, c) returns the list of k-best items in the union of list ` and set c

16/22

k-best parsing – merging more efficiently [HC05]
the set c can be computed lazily

avoid considering all k2 items obtained by combining each of b[i ,m,B] with b[m, j ,C]
instead, we only combine the best items of b[i ,m,B] with the best items of b[m, j ,C]:

if the combination of the u-th best of b[i ,m,B] and v -th best of b[m, j ,C] was

considered, then consider also the combinations (u + 1, v) and (u, v + 1)

2

2 ⇑

0

✄✂ ¡✁1 ⇒

1 2 4

(a)

2

2

✄✂ ¡✁3 ⇑

0 1

✄✂ ¡✁2 ⇒

1 2 4

(b)

2

2

✄✂ ¡✁3

✄✂ ¡✁4

0 1 2

✄✂ ¡✁4

1 2 4

(c)

10: b[i , j ,A] := []
11: for m ∈ {i + 1, . . . , j − 1} do
12: for A→ BC in R do
13: denote wu,v := µ(A→ BC) · w 1

u · w 2
v where

(d1
u ,w

1
u) := b[i ,m,B][u] and

(d2
v ,w

2
v) := b[m, j ,C][v]

14: F := {(1, 1)}
15: while max(u,v)∈F wu,v > min(d,w)∈b[i,j,A] w or |b[i , j ,A]| < k do
16: (u, v) = argmax(u,v)∈Fwu,v

17: b[i , j ,A] := insertAndTakeK(k, b[i , j ,A], {(A(d1
u , d

2
v),wu,v)})

18: F := (F \ {(u, v)}) ∪ {(u + 1, v), (u, v + 1)}

17/22

Outline

Pruning
Pruning for CKY parsing
Pruning for deductive parsing

k-best parsing

A*-parsing

18/22

A*-parsing

I weighted deductive parsing computes for each item (i , j ,A) in the chart the
weight of the most probable derivation from A to ti+1 · · · tj .

I How about future costs, i.e., the weight of S ⇒∗G t1 · · · ti A tj+1 · · · tn?
I If future costs are taken into account, then maybe less items from the queue need

to be processed.

I Why?: Usually items with small spans are more probable than items with large spans.
I This is counteracted by future costs which are higher for items with small spans.

I Klein and Manning [KM03] propose several admissible heuristics.

I A heuristic may also be useful when pruning items during CKY parsing.

18/22

A*-parsing

I weighted deductive parsing computes for each item (i , j ,A) in the chart the
weight of the most probable derivation from A to ti+1 · · · tj .

I How about future costs, i.e., the weight of S ⇒∗G t1 · · · ti A tj+1 · · · tn?

I If future costs are taken into account, then maybe less items from the queue need
to be processed.

I Why?: Usually items with small spans are more probable than items with large spans.
I This is counteracted by future costs which are higher for items with small spans.

I Klein and Manning [KM03] propose several admissible heuristics.

I A heuristic may also be useful when pruning items during CKY parsing.

18/22

A*-parsing

I weighted deductive parsing computes for each item (i , j ,A) in the chart the
weight of the most probable derivation from A to ti+1 · · · tj .

I How about future costs, i.e., the weight of S ⇒∗G t1 · · · ti A tj+1 · · · tn?
I If future costs are taken into account, then maybe less items from the queue need

to be processed.

I Why?: Usually items with small spans are more probable than items with large spans.
I This is counteracted by future costs which are higher for items with small spans.

I Klein and Manning [KM03] propose several admissible heuristics.

I A heuristic may also be useful when pruning items during CKY parsing.

18/22

A*-parsing

I weighted deductive parsing computes for each item (i , j ,A) in the chart the
weight of the most probable derivation from A to ti+1 · · · tj .

I How about future costs, i.e., the weight of S ⇒∗G t1 · · · ti A tj+1 · · · tn?
I If future costs are taken into account, then maybe less items from the queue need

to be processed.
I Why?: Usually items with small spans are more probable than items with large spans.

I This is counteracted by future costs which are higher for items with small spans.

I Klein and Manning [KM03] propose several admissible heuristics.

I A heuristic may also be useful when pruning items during CKY parsing.

18/22

A*-parsing

I weighted deductive parsing computes for each item (i , j ,A) in the chart the
weight of the most probable derivation from A to ti+1 · · · tj .

I How about future costs, i.e., the weight of S ⇒∗G t1 · · · ti A tj+1 · · · tn?
I If future costs are taken into account, then maybe less items from the queue need

to be processed.
I Why?: Usually items with small spans are more probable than items with large spans.
I This is counteracted by future costs which are higher for items with small spans.

I Klein and Manning [KM03] propose several admissible heuristics.

I A heuristic may also be useful when pruning items during CKY parsing.

18/22

A*-parsing

I weighted deductive parsing computes for each item (i , j ,A) in the chart the
weight of the most probable derivation from A to ti+1 · · · tj .

I How about future costs, i.e., the weight of S ⇒∗G t1 · · · ti A tj+1 · · · tn?
I If future costs are taken into account, then maybe less items from the queue need

to be processed.
I Why?: Usually items with small spans are more probable than items with large spans.
I This is counteracted by future costs which are higher for items with small spans.

I Klein and Manning [KM03] propose several admissible heuristics.

I A heuristic may also be useful when pruning items during CKY parsing.

18/22

A*-parsing

I weighted deductive parsing computes for each item (i , j ,A) in the chart the
weight of the most probable derivation from A to ti+1 · · · tj .

I How about future costs, i.e., the weight of S ⇒∗G t1 · · · ti A tj+1 · · · tn?
I If future costs are taken into account, then maybe less items from the queue need

to be processed.
I Why?: Usually items with small spans are more probable than items with large spans.
I This is counteracted by future costs which are higher for items with small spans.

I Klein and Manning [KM03] propose several admissible heuristics.

I A heuristic may also be useful when pruning items during CKY parsing.

19/22

A*-parsing – Viterbi outside score

We use the admissible heuristic out:

out(A) = max
d∈DG ,u,w∈Σ∗ : S

d⇒GuAw

weight(d)

It can be computed by a variant of the inside/outside algorithm:
1: function Inside
2: for A ∈ N do
3: in(A) := max({µ(A→ α) | A→ α ∈ R} ∪ {0})
4: while not converged do
5: for A ∈ N do
6: in(A) = max({in(A)} ∪ {µ(A→ BC) · in(B) · in(C) | A→ BC in R}

∪ {µ(A→ B) · in(B) | A→ B in R})
7: function Outside

8: set out(B) :=

{
1 B = S

0 otherwise
for each B ∈ N

9: while not converged do
10: for B ∈ N do
11: out(B) := max({out(B)} ∪ {out(A) · µ(A→ BC) · in(C) | A→ BC in R}

∪ {out(A) · µ(A→ CB) · in(C) | A→ CB in R}
∪ {out(A) · µ(A→ B) | A→ B in R})

20/22

A*-parsing – parsing algorithm with heuristic

The out-value is now simply included when selecting the best item from the queue:

Require: weighted binary cfg (N, Σ,P, S , µ), word t1 . . . tn where t1, . . . , tn ∈ Σ
Ensure: family (ci,j,A : R | 0 ≤ i < j ≤ n,A ∈ N) such that

ci,j,A = max{µ(d) | d ∈ DA
G (ti+1 . . . tj)} ∪ {0}

1: function deduce(P, µ, t1 . . . tn)
2: queue := {(i − 1,A, i , µ(A→ ti)) | 1 ≤ i ≤ n,A→ ti ∈ P}
3: (ci,j,A := 0 | 0 ≤ i < j ≤ n,A ∈ N)
4: while queue 6= ∅ do
5: (i ,A, j ,w) := argmax(i,A,j,w)∈queue w · out(A)
6: queue \= {(i ,A, j ,w)}
7: if ci,j,A = 0 then
8: ci,j,A := w
9: queue ∪= {(i ,A′, j ′, µ(A′ → AC) · w · cj,j′,C) | A′ → AC ∈ P}

10: queue ∪= {(i ′,A′, j , µ(A′ → BA) · ci′,i,B · w) | A′ → BA ∈ P}
11: queue ∪= {(i ,A′, j , µ(A′ → A) · w) | A′ → A ∈ P}
12: return c

21/22

Pruning for deductive parsing – in the context of CKY
Can A*-parsing be applied for CKY parsing?
Yes: in combination with pruning:

I Threshold beam
Require: family c = (ci,j,A ∈ R | A ∈ N), threshold θ ∈ [0, 1]
Ensure: family (ci,j,A ∈ R | A ∈ N)

1: function prune(c)
2: m = maxA∈N{ci,j,A · out(A) | A ∈ N}
3: for A ∈ N do
4: if ci,j,A · out(A) < m · θ then
5: ci,j,A := 0

6: return c

I Fixed-size beam
Require: family c = (ci,j,A ∈ R | A ∈ N), size 1 ≤ n ≤ |N|
Ensure: family (ci,j,A ∈ R | A ∈ N)

1: function prune(c)
2: [s1, . . . , sn] = n-best{ci,j,A · out(A) | A ∈ N}
3: for A ∈ N do
4: if ci,j,A · out(A) < sn then
5: ci,j,A := 0

6: return c

21/22

Pruning for deductive parsing – in the context of CKY
Can A*-parsing be applied for CKY parsing?
Yes: in combination with pruning:

I Threshold beam
Require: family c = (ci,j,A ∈ R | A ∈ N), threshold θ ∈ [0, 1]
Ensure: family (ci,j,A ∈ R | A ∈ N)

1: function prune(c)
2: m = maxA∈N{ci,j,A · out(A) | A ∈ N}
3: for A ∈ N do
4: if ci,j,A · out(A) < m · θ then
5: ci,j,A := 0

6: return c

I Fixed-size beam
Require: family c = (ci,j,A ∈ R | A ∈ N), size 1 ≤ n ≤ |N|
Ensure: family (ci,j,A ∈ R | A ∈ N)

1: function prune(c)
2: [s1, . . . , sn] = n-best{ci,j,A · out(A) | A ∈ N}
3: for A ∈ N do
4: if ci,j,A · out(A) < sn then
5: ci,j,A := 0

6: return c

22/22

[Atk+86] M. D. Atkinson et al. “Min-max Heaps and Generalized Priority Queues”. In: Commun. ACM 29.10
(Oct. 1986), pp. 996–1000. issn: 0001-0782. doi: 10.1145/6617.6621. url:
http://doi.acm.org/10.1145/6617.6621.

[HC05] Liang Huang and David Chiang. “Better k-best parsing”. In: Proceedings of the Ninth International
Workshop on Parsing Technology. Association for Computational Linguistics. 2005, pp. 53–64.

[KM03] Dan Klein and Christopher D. Manning. “A* Parsing: Fast Exact Viterbi Parse Selection”. In:
Proceedings of the 2003 Human Language Technology Conference of the North American Chapter
of the Association for Computational Linguistics. 2003, pp. 119–126. url:
https://www.aclweb.org/anthology/N03-1016.

https://doi.org/10.1145/6617.6621
http://doi.acm.org/10.1145/6617.6621
https://www.aclweb.org/anthology/N03-1016

	Pruning
	Pruning for CKY parsing
	Pruning for deductive parsing

	k-best parsing
	A*-parsing
	References

