Formale Baumsprachen

Task 18 (monadic second-order logic II)

Let $\Sigma = \{\sigma^{(2)}, \gamma^{(1)}, \alpha^{(0)}, \beta^{(0)}\}$ be a ranked alphabet and $\mathcal{V} = \{x, y, U\}$. Construct MSO-formulas $\varphi_1, \, \varphi_2$, and φ_3 such that $\mathrm{Fr}(\varphi_1), \mathrm{Fr}(\varphi_2), \mathrm{Fr}(\varphi_3) \subseteq \mathcal{V}$ and for every $\xi \in T_{\Sigma}$ and \mathcal{V} -assignment ρ for ξ :

- (a) $(\xi, \rho) \models \varphi_1$ iff there is a downward path from the node $\rho(x)$ to the node $\rho(y)$ in ξ , i.e. there is a $w \in \mathbb{N}^*$ such that $\rho(y) = \rho(x)w$.
- (b) $(\xi, \rho) \models \varphi_2$ iff $\rho(U)$ is the set of all positions w in ξ such that $\xi|_w = \sigma(\alpha, \beta)$.
- (c) $(\xi, \rho) \models \varphi_3$ iff for every node in ξ labeled by σ , none of its child nodes is labeled by γ .

Task 19 ($Rec \subseteq MSO$ -definable)

Let $\Sigma = \{\sigma^{(2)}, \gamma^{(1)}, \alpha^{(0)}\}$ be a ranked alphabet. Consider the bottom-up deterministic fta $\mathcal{A} = (Q, \Sigma, \delta, F)$ with $Q = \{0, 1\}$, $F = \{1\}$, and $\delta_{\sigma}(q_1, q_2) = \max\{q_1, q_2\}$ for every $q_1, q_2 \in Q$, $\delta_{\gamma}(q) = 1$ for every $q \in Q$, and $\delta_{\alpha}() = 0$. Use the construction from the lecture to show that $L(\mathcal{A})$ is MSO-definable.

Task 20 (MSO-definable $\subseteq \operatorname{Rec}$)

(a) Recall the following Lemma from the lecture:

Lemma. Let Σ be a ranked alphabet and $\mathcal{V} \subseteq_{\text{fin}} \mathcal{V}_1$. Then $T_{\Sigma_{\mathcal{V}}}^{\text{v}}$ is recognizable. In the proof we required a family of languages $(L_x \mid x \in \mathcal{V})$ where for every $x \in \mathcal{V}$:

$$L_x = \{ \xi \in T_{\Sigma_{\mathcal{V}}} \mid x \text{ occurs exactly once in } \xi \}.$$

Construct an automaton \mathcal{A}_x for every $x \in \mathcal{V}$ such that $L(\mathcal{A}_x) = L_x$.

(b) Let $\Sigma = {\sigma^{(2)}, \gamma^{(1)}, \alpha^{(0)}}$ and $\varphi = \exists x. \text{label}_{\gamma}(x)$. Use the construction from the lecture to show that $L(\varphi)$ is recognizable.