Formale Baumsprachen

Task 7 (top-down determinism)

Let $\Delta = \{\alpha^{(0)}, \beta^{(0)}, \sigma^{(2)}\}$ be a ranked alphabet. The set $\{\sigma(\alpha, \beta), \sigma(\beta, \alpha)\} \subseteq T_{\Delta}$ is bottom-up deterministically recognizable but not top-down deterministically recognizable. Show that for any ranked alphabet Σ with $\Sigma^{(0)} \neq \emptyset$ and $\Sigma \neq \Sigma^{(0)} \cup \Sigma^{(1)}$ there is a language L that is bottom-up deterministically recognizable but not top-down deterministically recognizable.

Task 8 (regular tree grammars)

(a) Let $\varSigma=\{\sigma^{(2)},\gamma^{(1)},\alpha^{(0)}\}$ be a ranked alphabet. Give regular tree grammars G_1 and G_2 such that

$$\begin{split} L(G_1) &= \{\xi \in T_{\varSigma} \mid \xi \text{ contains exactly one } \sigma \} \text{ and} \\ L(G_2) &= \{\xi \in T_{\varSigma} \mid \xi \text{ contains the pattern } \sigma(_,\gamma(_)) \text{ at least twice} \} \end{split}$$

(b) Let $\Sigma = \{\sigma^{(2)}, \alpha^{(0)}, \beta^{(0)}\}$ be a ranked alphabet and $G = (N, \Sigma, Z, P)$ a regular tree grammar where $N = \{Z, A, B, C\}$ and

$$P = \{ Z \to \sigma(\sigma(A, B), C), \qquad Z \to B, \qquad A \to \alpha, \qquad A \to B, \\ B \to \beta, \qquad B \to A, \qquad B \to C, \qquad C \to C \}.$$

Use the construction from the lecture to give a regular tree grammar in normal form equivalent to G.

Task 9 (yield(Rec) \subseteq CF)

Let $\Sigma = \{\sigma^{(2)}, \gamma^{(1)}, \alpha^{(0)}, \beta^{(0)}, \lambda^{(0)}\}$ be a ranked alphabet and $G = (N, \Sigma, Z, P)$ a regular tree grammar where $N = \{Z, A, B, C, D, E\}$ and

$$\begin{split} P &= \left\{ \begin{array}{ll} Z \to \sigma(A,B), & A \to \gamma(C), & B \to \sigma(E,E), \\ Z \to \lambda, & C \to \sigma(D,Z), & D \to \alpha \end{array} \right\} \end{split}$$

- (a) What form do the trees in L(G) have? Give the languages yield $_{\lambda}(L(G))$ and yield $_{\alpha}(L(G))$.
- (b) Construct a CFG G' that is λ -related to G.

Task 10 ($CF \subseteq yield(Rec)$)

Let $\Sigma = \{[,], \langle, \rangle\}$ be an alphabet and $G = (N, \Sigma, Z, P)$ a context-free grammar where $N = \{Z\}$ and

$$P = \{ Z \to ZZ, Z \to [Z], Z \to \langle Z \rangle, Z \to \varepsilon \ . \}$$

- (a) Construct an equivalent CFG G' in normal form.
- (b) Find a regular tree grammar H, some ranked alphabet \varDelta and some $e\in\varDelta$ such that $\mathrm{yield}_e(L(H))=L(G').$