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1 Introduction

In 1963, Noam Chomsky and Marcel-Paul Schützenberger introduced a well-known charac-
terization of context-free languages. The classical Chomsky-Schützenberger theorem [CS63,
Proposition 2] (CS theorem) states that each context-free language L is the homomorphic
image of the intersection of a Dyck-language Dn and a regular language R, i.e.,

L = h(Dn \ R)

for some homomorphism h. The Dyck language is the language of all the well-bracketed
expressions over some parenthesis alphabet Y . In the classical CS theorem, the number n
of parenthesis pairs in Y depends on the given context-free grammar. In [Har78, Theorem
10.4.3] an alternative formulation is given where this dependency can be avoided by coding Y
with a second homomorphism into a two-letter alphabet. This leads to the following theorem:
each context-free language L can be represented in the form

L = h(g�1(D2)\ R)

for some homomorphisms h and g and a regular language R.
In recent years, this result could be extended for several classes of languages. Meanwhile,

there are CS theorems for string languages generated by tree-adjoining grammars [Wei88],
multiple context-free languages [YKS10], yield images of simple context-free tree languages
[Kan14], and indexed languages [FV15]. Also in natural language processing, this result has
been applied – it is used for example in [Hul09] to specify a parser for context-free languages.

Already in the classical CS theorem a first aspect of weighting was considered. Thereby,
each word of a context-free language is associated with the number of its derivations. In
general, a weighted language is a function r : ⌃⇤ ! K which maps words over an alphabet ⌃
to values from some weight algebra K. Also for the weighted case a number of CS results
could be obtained. In [SS78] the CS theorem was shown for weighted context-free languages
over commutative semirings. In [DV13] this result was generalized to weighted context-free
languages over unital valuation monoids, called quantitative context-free languages. Recently,
the CS theorem has been proved for weighted multiple context-free languages over complete
commutative strong bimonoids [Den15].

The aim of this work is to develop a CS theorem for the class of weighted languages
recognizable by K-weighted automata with storage, where K is an arbitrary unital valuation
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1 Introduction

monoid. An automaton with storage S [Eng86; GG70; Sco67]1 is a one-way nondeterministic
finite-state automaton with an additional storage of type S; a successful computation starts
with the initial state and an initial configuration of S; in each transition the automaton can
test the current storage configuration and apply an instruction to it.

We extend the concept of automata with storage to that of K-weighted automata with
storage where K is a unital valuation monoid. This weight structure was introduced in [DM10;
DM11; DV13] for modelling a possibility to compute weights in a global manner, e.g., to
describe the average consumption of technical systems.

Then our main result states the following (cf. Thm. 7.6). Let r : ⌃⇤ ! K be recognizable
by some K-weighted automaton over some storage type S. Then there are a regular language
R, a finite set ⌦ of pairs (each consisting of a predicate and an instruction), a configuration c
of S, a letter-to-letter morphism g, and a (weighted) alphabetic morphism h such that

r = h(g�1(B(⌦, c))\ R)

where B(⌦, c) is the set of all ⌦-behaviours of c. An ⌦-behaviour can be understood as a valid
storage protocol.

On the way to this result, we proceed as follows:
After introducing some elementary notions, we recall in Section 3.1 and 3.2 the concept

of storage and automata with storage. As examples of storage types we consider the trivial
storage type, the (1-iterated) pushdown as well as the n-iterated pushdown, whereby the cor-
responding automata recognize the classes of recognizable languages, context-free languages
and n-iterated pushdown languages, respectively. Furthermore, we show how to express
M -automata [Kam07], where M is a (multiplicative) monoid, in a straightforward way as
automata with storage by introducing a new storage type MON(M) (cf. Example 3.2.1).

In Section 3.3 we extend automata with storage to weighted automata with storage, where
we use an arbitrary unital valuation monoid K as weight algebra ((S,⌃, K)-automata). Each
transition of an automaton is assigned a value of K; the weight of a computation results from
applying the valuation function of K to the weights of the transitions of the computation.

In [DV13] K-weighted pushdown automata (K-WPDA), where K is again a unital valuation
monoid, were used to represent K-weighted context-free languages. In Chapter 4 we compare
these automata formally with our automaton model instantiated with the 1-iterated pushdown
as storage type ((P1,⌃, K)-automata). Thereby, we have to handle among others the following
differences: In contrast to K-WPDAs, (P1,⌃, K)-automata must not have an empty pushdown.
Furthermore, (P1,⌃, K)-automata accept a word with an arbitrary final storage configuration,
whereas K-WPDA only recognize with empty pushdown. Nevertheless, we can prove that
K-WPDA over some alphabet ⌃ are expressively equivalent to (P1,⌃, K)-automata.

Our CS theorem for (S,⌃, K)-automata is presented in Chapter 7 and can be obtained by
the following two steps: In Chapter 5 we separate the weights from such an automaton. That
1 If we cite notions or definitions from [Eng86], then we always refer to the version of 2014, which is available

on arXiv.
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means, we decompose an (S,⌃, K)-automata into an unweighted (S,�)-automaton as well as
a weighted alphabetic morphism. Then we proceed in Chapter 6 with separating the storage
from an unweighted (S,�)-automaton.

Finally, in Chapter 8 we compare our CS result, instantiated with the 1-iterated pushdown,
informally with the CS theorem of [DV13]. Although the proof of the CS theorem in [DV13]
follows a different way, we hint that their result follows from our instantiated theorem.

Note that this thesis is based on [HV15] and expands this paper. However, the results of
Chapter 4 and Chapter 8 are entirely new.

9





2 Preliminaries

2.1 Notations and notions

This section introduces some elementary definitions and conventions.
We assume N to be the set of natural numbers, i.e. the set of all nonnegative integers

including zero. The set of all nonnegative real numbers is denoted by R�0. Furthermore, by
[n]we denote the set {1, 2, . . . , n} for every n 2 N. Thus, [0] = ;. For each finite and nonempty
subset A of N we denote by max(A) the greatest element of A. We use as a convention that
max(;) = 0.

Let A be a set. The (finite) power set of A, denoted by P(A) (respectively Pfin(A)), is the set of
all (finite) subsets of A. The cardinality of A will be denoted by |A| . We define the set of words
of length n 2 N over A as An = {a1 . . . an | a1, . . . , an 2 A} and for a word w = a1 . . . an 2 An

and an index i 2 [n] we set w(i) = ai . The set of words over A is defined as

A⇤ =
S

n2N An

and for any word w 2 A⇤, |w| is the length of w. The word of length 0 is denoted by " and is
called the empty word. Moreover, for every a 2 A, we denote by |w|a the number of as in w.

In the following let A, B and C be sets.
We denote the identity mapping on A by idA. Presuming a function f : A! B, for every subset
C ✓ B, we define its preimage under f as f �1(C) = {a 2 A | f (a) 2 C}. Furthermore, we
denote by im( f ) the set {b 2 B | 9a 2 A: f (a) = b}.

Given two sets A and I , we define a family of elements in A indexed by I , as a function f
from I to A. Instead of f we write (ai | i 2 I), where ai = f (i) for all indices i 2 I . If f maps
I to elements of the power set of A, (Ai | i 2 I) is called an indexed family of sets.

We fix a countably infinite set ⇤ and call its elements symbols. We call each finite subset ⌃
of ⇤ an alphabet. A language over ⌃ is a set L ✓ ⌃⇤.

Let ⌃ be an alphabet and A, B ✓ ⌃⇤. We define the language concatenation of A and B by
AB = {ab | a 2 A, b 2 B}. Note that if A consists of only one element, say A= {a}, we write
aB instead of AB, and analogously for B.

In the rest of this work, we let ⌃ and � denote alphabets unless specified otherwise.
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2 Preliminaries

2.2 Unital valuation monoids

The concept of valuation monoid was introduced in [DM10; DM11] and extended in [DV13]
to unital valuation monoid. Motivated by the standpoint of modeling quantitative aspects
of technical systems such as average consumption of some resource, there is a need for the
ability to calculate weights in a global manner. Instead of semirings, that only handle local
calculations, unital valuation monoids allow this global type of computations.

First, recall the notion of a monoid, which is an algebraic structure consisting of a set
together with an associative binary operation and an identity element.

Definition 2.1. A monoid is a triple (K , ·, 1), where K is a set (carrier set), 1 2 K, and
·: K ⇥ K ! K is a mapping such that for all a, b, c 2 K

• (a · b) · c = a · (b · c), and

• 1 · a = a · 1= a.

A monoid (K , ·, 1) is called commutative if its operation is commutative, i.e., for every a, b 2 K
we have that a · b = b · a. Commutative monoids are often denoted (K ,+, 0) instead. É

In various parts of this work we can not ensure the index sets of sums to be finite. For this
case we recall the notion of completeness (see, for example, [Eil74]).

Definition 2.2. A commutative monoid (K ,+, 0) is complete if it has an infinitary sum opera-
tion
P

I : K I ! K for any index set I such that

•
P

i2; ai = 0,

•
P

i2{k} ai = ak,

•
P

i2{ j,k} ai = aj + ak for j 6= k, and

•
P

j2J

ÄP
i2I j

ai

ä
=
P

i2I ai if
S

j2J I j = I and I j \ Ik = ; for j 6= k. É

Now we extend the notion of a monoid by a valuation function as well as a unit 1 and
obtain the definition of a unital valuation monoid.

Definition 2.3. A unital valuation monoid is a tuple (K ,+, val, 0, 1) such that

• (K ,+, 0) is a commutative monoid,

• val: K⇤ ! K is a mapping (valuation function) such that for every i 2 [n], a, a1, . . . , an 2
K ,

(i) val(a) = a,

(ii) val(a1 . . . an) = 0 whenever ai = 0,
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2.2 Unital valuation monoids

(iii) val(a1 . . . ai�1 1 ai+1 . . . an) = val(a1 . . . ai�1 ai+1 . . . an), and

(iv) val(") = 1.

We call a unital valuation monoid (K ,+, val, 0, 1) complete if (K ,+, 0) has this property. É

In the rest of this work, we let K denote an arbitrary unital valuation monoid
(K ,+, val, 0, 1) unless specified otherwise.

Even in the case that the carrier set of a unital valuation monoid K is denoted by, say, L,
we will often refer to L by K .

There are a number of examples for unital valuation monoids. The valuation function can
easily capture local, binary operations and therefore, each semiring can be simulated by a
unital valuation monoid. Recall that a semiring is a structure (K ,+, ·, 0, 1), where (K ,+, 0) is
a commutative monoid, (K , ·, 1) is a monoid, multiplication distributes over addition, and
a · 0= 0 · a = 0 for every a 2 K .

Example 2.4. Let (K ,+, ·, 0, 1) be a semiring. Then the structure (K ,+, val, 0, 1), where for
every n 2 N, d1, . . . , dn 2 K

val(d1 . . . dn) = d1 · . . . · dn,

is a unital valuation monoid. In particular, we consider the Boolean semiring
B = ({0,1},_,^, 0, 1), which can be simulated by the Boolean unital valuation monoid
B = ({0,1},_, val, 0, 1), where for every n 2 N, b1, . . . , bn 2 {0,1} we have val(b1 . . . bn) =
b1 ^ . . .^ bn. É

To show the ability of unital valuation monoids for calculating weights in a global manner,
we define such a structure for discounting [CDH08]. The idea behind this concept is to control,
depending on a discounting factor, whether the beginning or ending part of an argument
word has stronger influence on the result obtained by a valuation function.

Example 2.5. Let � 2 R�0 and R̃ = R�0 [ {�1}. We define the unital valuation monoid
K�disc = (R̃, max, val�disc,�1, 0)1 such that for n 2 N, a1, . . . , an 2 R̃

val�disc(a1 . . . an) = �0a1 + . . .+�n�1an.

If we now choose � = 0.5, we obtain as an example

val�disc(2 1 2 0) = �02+�11+�22+�30

= (0.5)02+ (0.5)11+ (0.5)22+ (0.5)30

= 3 . É

1 Note that in this case max is a binary operation on R̃. However, we also use the name max since this causes no
confusion.
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2 Preliminaries

2.3 Weighted languages

In this section we define the notion of weighted languages and related concepts. We start
with a simple example of an unweighted language that we will use frequently in the course
of this work.

Example 2.6. Let ⌃ = {a, b}. The set L = {w 2 ⌃⇤ | |w|a = |w|b} with words consisting of
the same number of as and bs is a language over ⌃. Then the word aabbba is an element of
L. É
Definition 2.7. A K-weighted language (over ⌃) is a mapping of the form r : ⌃⇤ ! K. We
denote the set of all mappings of this type by Khh⌃⇤ii. É

We note that we will not write the application r(w) as (r, w), although the latter is customary
in the theory of formal power series. In the sequel we write weighted language instead of
K-weighted language if K is clear from the context.

Example 2.8. Recall the unital valuation monoid K�disc = (R̃,max, val�disc,�1, 0) from Ex-
ample 2.5 for � = 0.5 and let ⌃ = {a, b}. We define the weighted language r : ⌃⇤ ! K�disc
with

r(w1 . . . wn) =

(
w̃t(w1)�0 + . . .+ w̃t(wn)�n�1 if |w1 . . . wn|a = |w1 . . . wn|b,

�1 otherwise

for every n 2 N, w1, . . . , wn 2 ⌃, where w̃t: ⌃! K�disc with w̃t(a) = 2 and w̃t(b) = 1. Now
consider the word aabbba 2 ⌃⇤. We have that

r(aabbba) = w̃t(a)�0 + w̃t(a)�1 + w̃t(b)�2 + w̃t(b)�3 + w̃t(b)�4 + w̃t(a)�5

= 2�0 + 2�1 + 1�2 + 1�3 + 1�4 + 2�5

= 3.5 . É

At some places in this work, the K-weighted language r will itself be the result of the
application of a mapping g to some element v, i.e., r = g(v). Then we will write g(v)(w)
instead of
�
g(v)
�
(w).

Definition 2.9. Let r 2 Khh⌃⇤ii. The support of r is the set {w 2 ⌃⇤ | r(w) 6= 0}, denoted by
supp(r). É

Each L 2 Bhh⌃⇤ii determines the set supp(L) ✓ ⌃⇤. Vice versa, each set L ✓ ⌃⇤ determines
the B-weighted language �L 2 Bhh⌃⇤ii with �L(w) = 1 if and only if w 2 L. Hence, for every
L ✓ ⌃⇤, we have supp(�L) = L; and for every L 2 Bhh⌃⇤ii we have �supp(L) = L. Thus, in the
sequel we will not distinguish between these two points of view.

Next we define the notion of local finiteness. The intuition behind this concept is the
following. A family of K-weighted languages over ⌃ is locally finite if each word over ⌃ is
only in the support of a finite number of these languages.
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2.3 Weighted languages

Definition 2.10. Let I be an enumerable set. A family (ri | i 2 I) of K-weighted languages
ri 2 Khh⌃⇤ii is locally finite if for each w 2 ⌃⇤ the set

Iw = {i 2 I | ri(w) 6= 0}

is finite. In this case or if K is complete, we define
P

i2I ri 2 Khh⌃⇤ii by letting
�P

i2I ri
�
(w) =P

i2Iw
ri(w) for every w 2 ⌃⇤. É
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3 Weighted automata with storage

Due to the large number of upcoming new automata models in the 60s of the previous century,
Dana Scott advocated in [Sco67] a homogeneous point of view on sequential programs
working on machines. There, a program is a flowchart over some sets of predicate symbols and
of (partial) function symbols, and a machine consists of a memory set and the interpretation
of the predicate and function symbols as predicates and functions on the memory set. This
viewpoint promoted the theory of abstract families of automata and their relationship to
abstract families of languages (cf. e.g., [GGH69]). We take up this concept and call it
finite-state automata with storage, where the finite-state automata correspond to sequential
programs and storages correspond to machines. We present this concept in the style of
[Eng86] (cf. [EV86; EV88] for further investigations). There, Joost Engelfriet has generalized
Scott’s idea from sequential programs to recursive programs, the latter being represented as
context-free grammars. From that point of view, we consider regular grammars with storage
in the present work. Moreover, we add weights to the transitions of the automaton, where
the weights are taken from some unital valuation monoid.

3.1 Storage types

We recall the definition of storage type from [Eng86; Sco67] as a set of configurations
together with predicates and instructions, which can test and modify a storage configuration,
respectively. However, we use a slight modification. In contrast to the definition in [Eng86],
which interprets predicate and instruction symbols with a meaning function, we immediately
define sets of predicates and instruction mappings. Furthermore, motivated by the viewpoint
of context-free grammars with storage as transducers, in [Eng86] an arbitrary set of input
symbols and a set of encodings is defined. Thereby each encoding is a partial function from
input symbols to configurations, due to the fact that different transducers could interpret
the input symbols in a different way. Since we neglect this view, we use a set of input
configurations instead.

Definition 3.1. A storage type is a tuple S = (C , P, F, C0), where C is a set (configurations),
P is a set of total functions each having the type p : C ! {true, false} (predicates), F is a
set of partial functions each having the type f : C ! C (instructions), and C0 ✓ C (initial
configurations). É
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3 Weighted automata with storage

Throughout this work we let S denote an arbitrary storage type (C , P, F, C0) unless
specified otherwise.

In the following we give the definitions of two specific storage types that we use often in
the course of this work. We start with the trivial storage type with one configuration c which
satisfies the only predicate ptrue and is mapped by the instruction fid to itself:

Definition 3.2. Let c be an arbitrary but fixed symbol. The trivial storage type is the storage
type TRIV = ({c}, {ptrue}, {fid}, {c}), where ptrue(c) = true and fid(c) = c. É

Next we recall the pushdown operator P from [Eng86, Definition 5.1] and [EV86, Definition
3.28]: if S is a storage type, then P(S) is another storage type of which the configurations
have the form of a pushdown; one part of each cell contains a configuration of S:

Definition 3.3. Let � be a fixed infinite set of pushdown symbols. Furthermore, let S =
(C , P, F, C0) be a storage type. The pushdown of S is the storage type P(S) = (C 0, P 0, F 0, C 00)
where

• C 0 = (� ⇥ C)+ and C 00 = {(�0, c0) | �0 2 � , c0 2 C0},

• P 0 = {bottom}[ {(top = �) | � 2 � }[ {test(p) | p 2 P} such that for every (�, c) 2 � ⇥ C
and ↵ 2 (� ⇥ C)⇤ we have

bottom
�
(�, c)↵
�

= true if and only if ↵= "
(top= �)
�
(�, c)↵
�
= true if and only if �= �

test(p)
�
(�, c)↵
�

= p(c)

• F 0 = {pop}[ {stay(�) | � 2 � }[ {push(�, f ) | � 2 � , f 2 F} such that for every (�, c) 2
� ⇥ C and ↵ 2 (� ⇥ C)⇤ we have

pop
�
(�, c)↵
�

= ↵ if and only if ↵ 6= "
stay(�)
�
(�, c)↵
�

= (�, c)↵
push(�, f )
�
(�, c)↵
�
= (�, f (c))(�, c)↵ if f (c) is defined

and undefined in all other situations. É

The intuition behind the storage type pushdown of S is the following. A configuration
consists of a nonempty sequence of pushdown cells. In contrast to classical pushdowns, each
cell has two parts – one part containing a pushdown symbol and one part with a configuration
of S.

Such a configuration can be tested by the three kinds of predicates defined above. The
predicate bottom is true on a configuration consisting of only one pushdown cell. If the
topmost pushdown symbol equals �, then the predicate top = � is satisfied. Furthermore,

18



3.1 Storage types

bottom
Å

� c
ã
= true

� c
...

(top= �)

test(p)

true if �= �

p(c)

Figure 3.1: An illustration of the predicates bottom, top= �, and test(p) applied to a configuration of
P(S) for some storage type S.

test(p) equals the predicate p applied to the topmost configuration of S. This is illustrated in
Figure 3.1.

Additionally, there are three possibilities to modify a pushdown configuration. By the
instruction pop, the topmost cell is removed from a pushdown with at east two cells. The
function stay(�) replaces the topmost pushdown symbol by the symbol �. By the instruction
push(�, f ) a new pushdown cell is added. This cell contains as pushdown symbol � and as
configuration f applied to the configuration of the pushdown cell lying underneath. For
further illustration see Figure 3.2.

...

� c� c
� c0

...

pop

...

� c� c
...

stay(�)

� c
...

� c
� f (c)

...

push(�, f )

Figure 3.2: An illustration of the instructions pop, stay(�), and push(�, f ) applied to a configuration of
P(S) for some storage type S.

Intuitively, P(TRIV) corresponds to the usual pushdown storage, except that there is no
empty pushdown. We can also apply P more than once to TRIV.
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3 Weighted automata with storage

Definition 3.4. Let n � 0. The n-iterated pushdown storage, denoted by Pn, is defined
inductively as follows: P0 = TRIV and if n� 1, then Pn = P(Pn�1). É

Example 3.5. As an example we consider the 2-iterated pushdown storage P2. A configuration
of this storage type consists of an outer pushdown which contains in the configuration part of
each pushdown cell an inner pushdown of type P1. For an illustration of such a configuration
consider Figure 3.3.

The inner pushdown of the topmost pushdown cell is accessible by “nested” predicates
and instructions. Thus, for example by test(top= �) it can be tested if the topmost symbol
of the inner pushdown on top of the outer pushdown is �. Furthermore, by push(�, pop) a
new cell is pushed to the outer pushdown. This cell contains as pushdown symbol � and as
configuration the pushdown of the lying underneath pushdown cell, where the topmost cell
is popped.

Figure 3.3: An illustration of a configuration of P2.

É
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3.2 Automata with storage

3.2 Automata with storage

Now we combine the well-known formalism of finite-state automata with the concept of
storage. The transitions of an automaton are enriched by predicates and instructions from a
storage type which control the derivation together with the automaton’s state control. Such
an automaton has additionally as part of its internal state a configuration of its underlying
storage type. A transition can be applied if its predicate succeeds on this configuration and
the instruction is defined on it. With execution of such a transition its instruction is applied
to the current configuration and the result is used for the next transition.

Recall that ⌃ is an alphabet and S = (C , P, F, C0) is a storage type.

Definition 3.6. An (S,⌃)-automaton is a tuple A= (Q,⌃, c0, q0,Q f , T ), where Q is a finite
set (states), ⌃ is an alphabet (terminal symbols), c0 2 C0 (initial configuration), q0 2Q (initial
state), Q f ✓Q (final states), and

T ✓Q⇥ (⌃[ {"})⇥ P ⇥Q⇥ F

is a finite set (transitions). If T ✓Q⇥⌃⇥ P ⇥Q⇥ F , then we call A "-free.
An S-automaton is an (S,⌃)-automaton for some alphabet ⌃. É

Whereas the configuration of a finite-state automaton consists of its current state and a
remaining partial word that has to be read, we extend this notion in the context of automata
with storage by a storage configuration.

Definition 3.7. Let A = (Q,⌃, c0, q0,Q f , T ) be an (S,⌃)-automaton. Then the set of A-
configurations is the set Q⇥⌃⇤ ⇥ C . É

The computation relation of A is the binary relation on the set of A-configurations defined
as follows.

Definition 3.8. Let A = (Q,⌃, c0, q0,Q f , T ) be an (S,⌃)-automaton and let ⌧ = (q, x , p, q0, f )
be in T . We define the binary relation `⌧ on the set of A-configurations such that for every
w 2 ⌃⇤ and c 2 C we have

(q, xw, c) `⌧ (q0, w, f (c))

if and only if p(c) is true and f (c) is defined. The computation relation of A is the binary
relation `=
S
⌧2T `⌧. É

Then we can define the language recognized by an automaton with storage. 1

Definition 3.9. Let A = (Q,⌃, c0, q0,Q f , T ) be an (S,⌃)-automaton. The language recognized
by A is the set

L(A) = {w 2 ⌃⇤ | (q0, w, c0) `⇤ (qf ,", c) for some qf 2Q f , c 2 C}. É
1 Note that we write `⇤ for the reflexive, transitive closure of `.
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3 Weighted automata with storage

Definition 3.10. Let A = (Q,⌃, c0, q0,Q f , T) be an (S,⌃)-automaton. A computation is a
sequence ✓ = ⌧1 . . .⌧n of transitions ⌧i 2 T , i 2 [n], such that there are A-configurations
c0, . . . , cn with ci�1 `⌧i ci , i 2 [n], for some n 2 N. We abbreviate this computation by c0 `✓ cn.

Let q 2 Q, w 2 ⌃⇤, and c 2 C . A q-computation on w and c is a computation ✓ such that
(q, w, c) `✓ (qf ,", c0) for some qf 2Q f , c0 2 C . We denote the set of all q-computations on w
and c by ⇥A(q, w, c). Furthermore, we denote the set of all q0-computations on w and c0 by
⇥A(w). É

The notion of computations of some (S,⌃)-automaton A gives us the possibility of defining
the language recognized by A in an alternative way as the set

L(A) = {w 2 ⌃⇤ | ⇥A(w) 6= ;} .

Definition 3.11. Let L ✓ ⌃⇤. Then L is (S,⌃)-recognizable if there is an (S,⌃)-automaton A
with L(A) = L. É

Now, after introducing the definitions for the syntax and semantics of automata with
storage, it is time to illustrate this concept with an example.

Example 3.12. Let ⌃ = {a, b}. We show how to construct a (P1,⌃)-automaton A which
recognizes the context-free language {w 2 ⌃⇤ | |w|a = |w|b}. Recall that P1 = P(TRIV) with
TRIV = ({c}, {ptrue}, {fid}, {c}) and � is a fixed infinite set of pushdown symbols.

Now let A = ({q, f },⌃, ($, c), q, { f }, T ) with $ 2 � and T contains the following transitions,
where A, B 2 � are two symbols distinct from $:

⌧1 = (q, a, bottom, q, push(B, fid)),

⌧2 = (q, a, top= A, q, pop),

⌧3 = (q, a, top= B, q, push(B, fid)),

⌧4 = (q, b, bottom, q, push(A, fid)),

⌧5 = (q, b, top= B, q, pop),

⌧6 = (q, b, top= A, q, push(A, fid)),

⌧7 = (q,", bottom, f , stay($)).

To illustrate how this automaton works, we consider the behaviour of A on the word
w = aabbba. It is easy to see that A recognizes w with the computation ⌧1⌧3⌧5⌧5⌧4⌧2⌧7 2
⇥A(w). Starting with the initial storage configuration ($, c), A reads two times the symbol
a and pushes thus two Bs on the pushdown. Intuitively, A counts with the number of Bs
on the pushdown how much more as than bs were read. Each of this Bs is popped while
reading a symbol b. After the prefix aabb of w has been read the storage of A has its initial
configuration again. Now another b is read. At this point, the storage “switches” from
counting as to counting bs by pushing A. With the last symbol a this topmost A is popped.
By testing bottom, the automaton checks in the last transition ⌧7 if the number of as equals
the number of bs that have been read and changes into the final state. This behaviour of the
storage of A is illustrated in Figure 3.4. É
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3.2 Automata with storage
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Figure 3.4: The behaviour of the storage of A during the computation ⌧1⌧3⌧5⌧5⌧4⌧2⌧7 on the word
aabbba.

Given a word w 2 ⌃⇤ there might be more than one possibility for an (S,⌃)-automaton A
to recognize w. This observation leads to the concept of ambiguity.

Definition 3.13. Let A = (Q,⌃, c0, q0,Q f , T ) be an (S,⌃)-automaton. We say that A is
ambiguous if there is a w 2 ⌃⇤ such that |⇥A(w)|� 2. Otherwise A is unambiguous. É

3.2.1 Instantiations of (S,⌃)-automata

In this subsection we want to consider a few instantiations of (S,⌃, K)-automata and the
resulting classes of languages.

Iterated pushdown languages

If S is the trivial storage type, i.e., S = TRIV, then the third component of each A-configuration
of a (TRIV,⌃)-automaton A is c and obviously the storage has no influence on L(A). Thus,
(TRIV,⌃)-automata are expressively equivalent to finite state automata over ⌃.

Observation 3.14. Let L ✓ ⌃⇤. Then L is recognizable by a finite state automaton if and only
if L is (TRIV,⌃)-recognizable.

Moreover, we have that P1-automata are essentially pushdown automata. The only dif-
ference lies in the fact that P1-automata cannot have an empty pushdown. This causes no
problem and can be handled appropriately (see, for example, Chapter 4).

Observation 3.15. Let L ✓ ⌃⇤. Then L is recognizable by a pushdown automaton if and only
if L is (P1,⌃)-recognizable.

For each n� 1, (Pn,⌃)-automata correspond to n-iterated pushdown automata of [DG86;
Eng83; Mas74; Mas76].

Observation 3.16. Let L ✓ ⌃⇤. Then L is an n-iterated pushdown language if and only if L
is (Pn,⌃)-recognizable for some n� 1.
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3 Weighted automata with storage

Embedding of M -automata

As another example we show how to embed the concept of M -automata [Kam07], where M
is a monoid, into the setting of automata with storage. First let us recall briefly the concept
of M -automata from [Kam07].

Definition 3.17. Let (M , ·, 1) be a monoid and ⌃ an alphabet. An M-automaton (over ⌃) is
a tuple A = (Q,⌃, q0,Q f , T ) where Q is a finite set (states), q0 2Q (initial state), F ✓Q (final
states), and T is a finite set (transitions); each transition has the form (q, x , q0, m) where
q, q0 2Q, x 2 ⌃[ {"}, and m 2 M . É

Let A = (Q,⌃, q0,Q f , T ) be an M-automaton for some monoid M for the rest of
this section.

Definition 3.18. The set of configurations of A is the set Q ⇥⌃⇤ ⇥M . For every transition
⌧ = (q, x , q0, m) in T we define the binary relation `⌧✓ (Q⇥⌃⇤ ⇥M)⇥ (Q⇥⌃⇤ ⇥M) such
that for every w 2 ⌃⇤ and m0 2 M , we have (q, xw, m0) `⌧ (q0, w, m0 ·m). É

Definition 3.19. The computation relation of A is the binary relation `=
S
⌧2T `⌧. In the

same way as for (S,⌃)-automata we define the concept of a computation ✓ . Then, for each
w 2 ⌃⇤, the set of computations of A on w is the set

⇥A(w) = {✓ | (q0, w, 1) `✓ (qf ,", 1) for some qf 2Q f }. É

Definition 3.20. The language recognized by A is the set

L(A) = {w 2 ⌃⇤ | ⇥A(w) 6= ;}. É

Example 3.21. Let ⌃ = {a, b}. We will show how to construct an M -automaton A which
recognizes the context-free language {w 2 ⌃⇤ | |w|a = |w|b}. For this let M = (Z,+, 0), where
Z is the set of integers. We define the M -automaton A = ({q},⌃, q, {q}, T ) with the set of
transitions

T = {⌧1 = (q, a, q, 1),⌧2 = (q, b, q, -1)}.
Now consider the behaviour of A on the word w = aabbba. It is easy to see that A recognizes
w with the computation

(q, aabbba, 0) `⌧1 (q, abbba, 0+ 1) `⌧1 (q, bbba, 1+ 1) `⌧2 (q, bba, 2+ (-1))

`⌧2 (q, ba, 1+ (-1)) `⌧2 (q, a, 0+ (-1)) `⌧1 (q,", (-1) + 1) . É

For the embedding of M -automata into automata with storage, we first define a new storage
type.

Definition 3.22. Let (M , ·, 1) be a monoid. We define the storage type monoid M , denoted
by MON(M), by (C , P, F, C0), where
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3.2 Automata with storage

• C = M and C0 = {1},

• P = {true?}[ {1?} where true?(m) = true, and 1?(m) = true if and only if m= 1,

• F = {[m] | m 2 M} where [m]: M ! M is defined by [m](m0) = m0 · m for every
m, m0 2 M . É

Now we can show that each language L ✓ ⌃⇤ which is recognizable by an M -automaton is
also recognizable by a MON(M)-automaton over ⌃.

Lemma 3.23. Let L ✓ ⌃⇤ be a languages. If L is recognizable by an M -automaton over ⌃,
then L is (MON(M),⌃)-recognizable.

Proof. Let A= (Q,⌃, q0,Q f , T ) be an M -automaton. Then we construct the (MON(M),⌃)-
automaton B = (Q0,⌃, 1, q0, {qf }, T 0) where Q0 =Q [ {qf } with some new state qf 62Q and
T 0 is defined as follows:

• If (q, x , q0, m) 2 T , then (q, x , true?,q0, [m]) 2 T 0, and

• for each q 2Q f , the transition (q,", 1?, qf , [1]) is in T 0.

Let w 2 ⌃⇤ such that w = u1 . . . un for some n 2 N and with ui 2 ⌃ for i 2 [n]. Let ✓ = ⌧1 . . .⌧m

with ⌧1, . . . ,⌧m 2 T be a computation in ⇥A(w) for some m � n. Then we construct the
q0-computation ✓ 0 = ⌧01 . . .⌧0m+1, ⌧01, . . . ,⌧0m+1 2 T 0, in ⇥B(w) as follows:

• Let 1 i  m. If ⌧i = (qi�1, xi , qi , mi), then ⌧0i = (qi�1, xi , true?, qi , [mi]).

• Furthermore, ⌧0m+1 = (qm,", 1?, qf , [1]).

Conversely, for every q0-computation ✓ 0 = ⌧01 . . .⌧0m+1 in ⇥B(w), by definition of T 0, there
is a uniquely determined computation ✓ = ⌧1 . . .⌧m in ⇥A(w) such that ✓ 0 is the computation
constructed above. Thus, for each w 2 ⌃⇤, the set ⇥A(w) of computations of A on w and the
set ⇥B(w) of q0-computations on w and 1 are in a one-to-one correspondence, and hence

L(A) = {w 2 ⌃⇤ | ⇥A(w) 6= ;}= {w 2 ⌃⇤ | ⇥B(w) 6= ;}= L(B). Ñ

Example 3.24. Recall the M -automaton A= ({q},⌃, q, {q}, T ) as well as the monoid M =
(Z,+, 0) from Example 3.21. We construct an (MON(M),⌃)-automaton B such that L(A) =
L(B). For this we define B = ({q, f },⌃, 0, q, { f }, T 0) with the set of transitions

T 0 = {⌧1 = (q, a, true?,q, [1]),⌧2 = (q, b, true?,q, [-1]),⌧ f = (q,", 0?, q, [0])}.

Now consider the behaviour of B on the word w = aabbba. It is easy to see that B recognizes
w with the computation ⌧1⌧1⌧2⌧2⌧2⌧1⌧ f . É
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3 Weighted automata with storage

3.3 Weighted automata with storage

Next we define the weighted version of (S,⌃)-automata. For this recall that (K ,+, val, 0, 1) is
a unital valuation monoid. As usual, we combine an unweighted (S,⌃)-automaton with a
weight function, which assigns to each transition a value from K . The line of our definitions
follows the definition of weighted pushdown automata in [DV13].

Definition 3.25. An (S,⌃)-automaton with weights in K is a tuple A = (Q,⌃, c0, q0,Q f , T,wt)
where (Q,⌃, c0, q0,Q f , T ) is an (S,⌃)-automaton (underlying (S,⌃)-automaton) and wt: T !
K is a mapping (weight assignment).

If the underlying (S,⌃)-automaton is "-free, then we call A "-free. É

Note that if we write in the following “the transition ⌧ is of weight a”, then we mean
wt(⌧) = a.

The computations of A are those of its underlying (S,⌃)-automaton, and the sets⇥A(q, w, c)
and⇥A(w), where q 2Q, w 2 ⌃⇤ and c 2 C , are defined analogously. Additionally, the weights
that are assigned to the transitions of a computation, are evaluated by the valuation function
of K .

Definition 3.26. Let A= (Q,⌃, c0, q0,Q f , T, wt) be an (S,⌃)-automaton with weights in K .
Furthermore, let ✓ = ⌧1 . . .⌧n be a computation of A for some n 2 N, ⌧1, . . . ,⌧n 2 T . The
weight of ✓ is the element wt(✓ ) in K defined by

wt(✓ ) = val(wt(⌧1) . . .wt(⌧n)) . É

To determine the weight of a word w 2 ⌃⇤, we have to consider all computations on w in
A. Therefore we have to require some finiteness properties for A, namely, that there are only
finitely many computations on w for the case that K is not complete.

Definition 3.27. An (S,⌃,K)-automaton is an (S,⌃)-automaton A with weights in K such
that

(i) ⇥A(w) is finite for every w 2 ⌃⇤, or

(ii) K is complete. É

Then we can define that an (S,⌃,K)-automaton A associates to every word w 2 ⌃⇤ the sum
of the weights of all computations on w.

Definition 3.28. Let A be an (S,⌃,K)-automaton. The weighted language recognized by A is
the K-weighted language ||A||: ⌃⇤ ! K defined for every w 2 ⌃⇤ by

||A||(w) =
P
✓2⇥A(w)wt(✓ ) . É

Definition 3.29. A weighted language r : ⌃⇤ ! K is (S,⌃, K)-recognizable if there is an
(S,⌃, K)-automaton A such that r = ||A||. É
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3.3 Weighted automata with storage

Definition 3.30. Two (S,⌃, K)-automata A1 and A2 are equivalent if ||A1||= ||A2||. É

At this point we want to take up the (S,⌃)-automaton from Example 3.12 and expand it
by weights. So far this automaton recognized words over ⌃ with the same number of as and
bs. Now additionally the discounting of Example 2.5 is applied on these words. Intuitively
the thereby obtained weighted language orders words of the same length by the positions
of the contained symbols. A word is assigned a greater value the more as are located at the
beginning of the word. Words with an unequal number of as and bs are mapped to �1.

Example 3.31. Recall the unital valuation monoid K�disc = (R̃, max, val�disc,�1, 0) from
Example 2.5 for � = 0.5 and let ⌃ = {a, b}. We define the (P1,⌃,K�disc)-automaton A =
({q, f },⌃, ($, c), q, { f }, T,wt) with $ 2 � and T contains the following transitions, where
A, B 2 � are two symbols distinct from $:

⌧1 = (q, a, bottom, q, push(B, fid)),

⌧2 = (q, a, top= A, q, pop),

⌧3 = (q, a, top= B, q, push(B, fid)),

⌧4 = (q, b, bottom, q, push(A, fid)),

⌧5 = (q, b, top= B, q, pop),

⌧6 = (q, b, top= A, q, push(A, fid)),

⌧7 = (q,", bottom, f , stay($)).

Moreover, for each ⌧ 2 T of the form (q, x , p, q0, f ), wt(⌧) is defined by

wt(⌧) =

8
><
>:

2 if x = a,

1 if x = b, and

0 otherwise .

Now, again consider the computation ✓ = ⌧1⌧3⌧5⌧5⌧4⌧2⌧7 of A on the word w= aabbba.
We have that

wt(✓ ) = val�disc(wt(⌧1)wt(⌧3)wt(⌧5)wt(⌧5)wt(⌧4)wt(⌧2)wt(⌧7))

= val�disc(2211120)

= 2�0 + 2�1 + 1�2 + 1�3 + 1�4 + 2�5 + 0�6

= 3.5 .

Note that also " is in the support of A since ⌧7 2 ⇥A(") and wt(⌧7) = 0, which is the 1
element of K�disc.

It is easy to see that ||A|| equals the weighted language r : ⌃⇤ ! K�disc with

r(w1 . . . wn) =

(
w̃t(w1)�0 + . . .+ w̃t(wn)�n�1 if |w1 . . . wn|a = |w1 . . . wn|b,

�1 otherwise,

for every n 2 N, w1, . . . , wn 2 ⌃, where w̃t: ⌃! K�disc with w̃t(a) = 2 and w̃t(b) = 1. É

27



3 Weighted automata with storage

3.3.1 Instantiations of (S,⌃, K)-automata

Again we want to consider a few instantiations of (S,⌃, K)-automata and the resulting classes
of languages.

Each (S,⌃,B)-automaton A can be considered as an (S,⌃)-automaton which recognizes
supp(||A||); note that B can be extended to a complete unital valuation monoid.

If S is the trivial storage type, i.e., S = TRIV, then the third component of each A-
configuration is c and obviously the storage has no influence on ||A||. Thus, we drop S from
all the denotations and simply write (⌃, K)-automaton instead of (TRIV,⌃, K)-automaton. It
is obvious that, apart from "-moves, (⌃, K)-automata are same as weighted finite automata
over ⌃ and the valuation monoid K (as, e.g., in [DM10; DM11; DV13]).

Observation 3.32. Let r : ⌃⇤ ! K . Then r is recognizable by a weighted finite state automa-
ton over ⌃ and K if and only if r is (TRIV,⌃, K)-recognizable.

The (P1,⌃, K)-automata are essentially the same as weighted pushdown automata over ⌃
and K [DV13]. For this we refer to Theorem 4.9 in the next chapter.

Furthermore, we also want to consider the iterated pushdown storage type in the weighted
case. For this we introduce the class of weighted iterated pushdown languages.

Definition 3.33. For n � 0, a weighted n-iterated pushdown language over ⌃ and K is a
(Pn,⌃, K)-recognizable weighted language. É
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4 Comparison of weighted pushdown
automata and (P1,⌃, K)-automata

Let us now compare weighted pushdown automata (WPDA) defined in [DV13]with (P1,⌃, K)-
automata. For this we first recall the concept of WPDA over ⌃ and K , but in a form which uses
the definitions and notions of the current work. Therefore, we define a pushdown storage
type, which is able to simulate the pushdown part of a WPDA and afterwards, we give a
slightly modified semantics for our automaton model.

Recall that � is a fixed infinite set of pushdown symbols.

Definition 4.1. The pushdown storage type is the storage type PD= (C , P, F, C0) where

• C = � ⇤ and C0 = � ,

• P = {�? | � 2 � } such that for every ↵ 2 � ⇤ we have

�?(↵) =

(
true iff ↵= �↵0 for some ↵0 2 � ⇤

false otherwise

• F = {⇡! | ⇡ 2 � ⇤} such that for every ↵ 2 � ⇤ we have

⇡!(↵) = ⇡↵0 if ↵= �↵0 for some � 2 � and ↵0 2 � ⇤

and undefined in all other situations. É

Note that the instructions of PD cover all instructions of P1: the instruction "! equals pop,
the instruction �! for some � 2 � equals stay(�), and the instruction ��! with �, � 2 � covers
push(�, fid) assuming that � is the current topmost pushdown symbol.

As the weighted pushdown automata defined in [DV13] accept with empty pushdown, we
introduce the language recognized by a (PD,⌃, K)-automaton with empty pushdown. For
this we introduce the concept of (q,")-computations, which ensure that a computation ends
with the storage configuration ".

Definition 4.2. Let A = (Q,⌃, c0, q0,Q f , T,wt) be a (PD,⌃, K)-automaton. Moreover, let
q 2Q, w 2 ⌃⇤ and c 2 � ⇤. A (q,")-computation on w and c is a computation ✓ such that

(q, w, c) `✓ (qf ,",")
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4 Comparison of weighted pushdown automata and (P1,⌃, K)-automata

for some qf 2Q f .
We denote the set of all (q,")-computations on w and c by ⇥"A(q, w, c). Furthermore, we

denote the set of all (q0,")-computations on w and c0 by ⇥"A(w). É

Definition 4.3. Let A = (Q,⌃, c0, q0,Q f , T,wt) be a (PD,⌃, K)-automaton. The weighted
language recognized by A with empty pushdown is the K-weighted language ||A||" : ⌃⇤ ! K
defined for every w 2 ⌃⇤ by

||A||"(w) =
X

✓2⇥"A(w)
wt(✓ ) . É

Note that the sum is well-defined, because A is a (PD,⌃, K)-automaton and ⇥"A(w) ✓
⇥A(w).

Definition 4.4. Let r : ⌃⇤ ! K be a weighted language. Then r is recognizable by a (PD,⌃, K)-
automaton with empty pushdown if there is a (PD,⌃, K)-automaton A such that r = ||A||". É

It is easy to see that (PD,⌃, K)-automata which recognize with empty pushdown are the
same as WPDA over ⌃ and K, since the storage type PD captures the storage behaviour of
WPDA and our semantics in Definition 4.3 is exactly the semantics of WPDA defined in [DV13,
page 208]. This leads to the following observation.

Observation 4.5. Let r : ⌃⇤ ! K be a weighted language. Then r is recognizable by a
(PD,⌃, K)-automaton with empty pushdown if and only if r is the quantitative behaviour of
a WPDA as defined in [DV13].

Now, before we compare (PD,⌃, K)-automata with (P1,⌃, K)-automata, we need a pos-
sibility to collate the weights of computations of such two automata without applying the
valuation function val of K. For this we use the fact that all sequences over K which differ
only in additional 1 elements are mapped by val to the same value from K .

Definition 4.6. Let A1 = (Q1,⌃, c0,1, q0,1,Q f ,1, T1, wt1) be a (P1,⌃, K)-automaton and let
A2 = (Q2,⌃, c0,2, q0,2,Q f ,2, T2, wt2) be a (PD,⌃, K)-automaton. We define the mapping
wtA1,A2

: T1 [ T2! K [ {"} such that for every ⌧ 2 T1 [ T2

wtA1,A2
(⌧) =

8
><
>:

wt1(⌧) if ⌧ 2 T1 and wt1(⌧) 6= 1

wt2(⌧) if ⌧ 2 T2 and wt2(⌧) 6= 1

" otherwise.

This mapping is well-defined since T1 \ T2 = ;. Note that we write wt instead of wtA1,A2
if

A1 and A2 are clear from the context. This mapping can be extended to a mapping wt0 : T ⇤1 [
T ⇤2 ! K⇤ such that wt0(") = ", and for every n 2 N, ⌧1 . . .⌧n 2 T ⇤1 [ T ⇤2 with ⌧1, . . . ,⌧n 2
T1 [ T2 we have wt0(⌧1 . . .⌧n) = wt(⌧1) . . . wt(⌧n). In the following, we identify wt and
wt0. É
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The next lemma proves that each two computations which result in the same sequence
under wt are mapped to the same weight in K by the valuation function.

Lemma 4.7. Let A1 be a (P1,⌃, K)-automaton and let A2 be a (PD,⌃, K)-automaton. Further-
more, let w 2 ⌃⇤, ✓1 2 ⇥A1

(w), and ✓2 2 ⇥"A2
(w). If wt(✓1) = wt(✓2), then wt1(✓1) = wt2(✓2).

Proof. Let A1 = (Q1,⌃, c0,1, q0,1,Q f ,1, T1, wt1) be a (P1,⌃, K)-automaton and let
A2 = (Q2,⌃, c0,2, q0,2,Q f ,2, T2,wt2) be a (PD,⌃, K)-automaton. Furthermore, let w 2 ⌃⇤,
n, m 2 N, ✓1 = ⌧1 . . .⌧n 2 ⇥A1

(w), ⌧1, . . . ,⌧n 2 T1, and ✓2 = ⌧01 . . .⌧0m 2 ⇥"A2
(w), ⌧01, . . . ,⌧0m 2

T2, such that wt(✓1) = wt(✓2). Then

wt1(✓1) = val(wt1(⌧1) . . .wt1(⌧n))

= val(wt(⌧1 . . .⌧n)) (⇤)
= val(wt(⌧01 . . .⌧0m)) (since wt(✓1) = wt(✓2))

= val(wt2(⌧01) . . .wt2(⌧0m)) (⇤)
= wt2(✓2),

where (⇤) holds by property (iii) in the definition of unital valuation monoids, which states
that each “1” can be ignored. Ñ

If we compare non-empty pushdown configurations from P1 and PD, we can observe that
the only difference lies in the fact that configurations from P1 consist of a second component.
Consider for example

(�1, c)(�2, c)(�3, c) from P1 and �1�2�3 from PD

for �1, �2, �3 2 � . It is easy to see that this second component gives a configuration no
additional information since it consists always of the only configuration c of TRIV. But on
the contrary in some situations it is easier to prove a property, if we neglect this component.
For this reason we introduce the following abbreviation.

Definition 4.8. Let A= (Q,⌃, c0, q0,Q f , T,wt) be a (P1,⌃, K)-automaton. Furthermore, let
c0 = (�0, c) for some �0 2 � , and let w 2 ⌃⇤ and q 2 Q. For every n � 1, ⌘ = �1 . . .�n with
�1, . . . ,�n 2 � we denote by ⇥A(q, w,⌘) the set ⇥A(q, w,⌘0), where ⌘0 = (�1, c) . . . (�n, c).

Trivially, we have that ⇥A(q, w,�0) = ⇥A(q, w, c0). É
The main issue of this chapter is to prove that (PD,⌃, K)-automata accepting with empty

pushdown and (P1,⌃, K)-automata are expressively equivalent. This is stated by the following
theorem.

Theorem 4.9. Let r : ⌃⇤ ! K be a weighted language. Then r is recognizable by a (PD,⌃, K)-
automaton with empty pushdown if and only if r is (P1,⌃, K)-recognizable.

This result follows from the subsequent Lemmas 4.10 and 4.25 which we will prove in
Section 4.1 and 4.2, respectively.
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4 Comparison of weighted pushdown automata and (P1,⌃, K)-automata

4.1 (P1,⌃, K)-automata can be simulated by (PD,⌃, K)-automata

The aim of this section is to show formally that each (P1,⌃, K)-automaton can be simulated
by some (PD,⌃, K)-automaton accepting with empty storage. That means we will show that
for each (P1,⌃, K)-automaton A there exists a (PD,⌃, K)-automaton B such that ||A|| = ||B||",
which is stated by the following lemma.

Lemma 4.10. Let r : ⌃⇤ ! K be a weighted language. If r is (P1,⌃, K)-recognizable, then r
is (PD,⌃, K)-recognizable with empty pushdown.

To prove this Lemma, we proceed in several steps, about which we would like to give a
brief overview here. First, we will introduce a normal form for (P1,⌃, K)-automata, which
we call test normal form. Based on a (P1,⌃, K)-automaton A in test normal form we will
subsequently define a (PD,⌃, K)-automaton B that is induced by A. To show that ||A|| = ||B||",
we will indicate a bijection between the computations of A and B by specifying a function f
between these two sets and proving that f is surjective, injective, and weight preserving.

Recall that P1 = P(TRIV) with TRIV = ({c}, {ptrue}, {fid}, {c}). Since the only predicate
ptrue of TRIV is true on c, we have that the predicate test(ptrue) is successful on each storage
configuration of P1. Therefore, test(ptrue) is superfluous in the context of (P1,⌃, K)-automata
as each transition containing this predicate can be replaced by transitions which test each
possible top of the pushdown. For this reason, we can introduce a normal form for (P1,⌃, K)-
automata in which the predicate test(ptrue) is avoided.

Definition 4.11. Let A = (Q,⌃, c0, q0,Q f , T,wt) be a (P1,⌃, K)-automaton. We say that A is
in test normal form if for every transition (q, x , p, q0, f ) 2 T we have that p 6= test(ptrue). É

Lemma 4.12. For every (P1,⌃, K)-automaton A there is a (P1,⌃, K)-automaton A0 in test
normal form such that ||A||= ||A0||.

Proof. Let A = (Q,⌃, c0, q0,Q f , T,wt) be a (P1,⌃, K)-automaton. Recall that c0 = (�0, c)
for some �0 2 � and let �A = {�0} [ X , where X is the finite set of pushdown symbols
occurring in transitions of A. We construct a (P1,⌃, K)-automaton A0 which has no tran-
sitions containing test(ptrue) as predicate and such that ||A0|| = ||A||. For this we define
A0 = (Q,⌃, c0, q0,Q f , TA0 ,wtA’) as follows. Let ⌧ = (q, x , p, q0, f ) be in T . If p 6= test(ptrue),
then ⌧ is in TA0 and wtA’(⌧) = wt(⌧). If p = test(ptrue), then for each � 2 �A the transition
⌧0 = (q, x , top= �, q0, f ) is in TA0 and wtA’(⌧0) = wt(⌧).

As the predicate test(ptrue) is true on every configuration of P1 and we copy transitions
containing this predicate for every possible topmost pushdown symbol, it is easy to see that
||A0||= ||A||. Ñ

Let A be a (P1,⌃, K)-automaton in test normal form. In a second step we construct a
(PD,⌃, K)-automaton B that is induced by A. Therefore we have to take care of differences
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4.1 (P1,⌃, K)-automata can be simulated by (PD,⌃, K)-automata

between (P1,⌃, K)-automata and (PD,⌃, K)-automata concerning the handling of pop on a
pushdown which contains exactly one symbol. Since P1 does not have " as configuration,
any attempt of a (P1,⌃, K)-automaton to apply pop to a single-symbol pushdown blocks
the computation. In contrast, a (PD,⌃, K)-automaton can very well apply a pop in such a
situation, yielding the empty pushdown (and then, e.g. accept the string on final state). Thus,
when simulating A, the automaton B also has to block its computation whenever A applies a
pop to a single-symbol pushdown. For this purpose, we insert a new symbol # at the very
bottom of the pushdown whereby B can detect the mentioned situation. Moreover, as B
accepts with empty pushdown, the pushdown must be emptied when A accepts.

Definition 4.13. Let A = (Q,⌃, c0, q0,Q f , T, wt) be a (P1,⌃, K)-automaton in test normal
form. Recall that c0 = (�0, c) for some �0 2 � . Furthermore, let �A = {�0}[ X , where X is
the finite set of pushdown symbols occurring in transitions of A and let # 2 � be a symbol
such that �A \ {#}= ;.

Then we define B = (QB,⌃, #, q0,B, { fB}, TB, wtB) as the (PD,⌃, K)-automaton induced by
A, where QB = Q [ Q̄ [Q1 [Q2 [ {q0,B, fB} with some new states q0,B, fB /2 Q, as well as
Q1 = (Q⇥ �A), Q2 = (Q⇥ �A ⇥ �A), and Q̄ = {q̄ | q 2Q}. The set TB of transitions is defined
as follows:

• The transition ⌧= (q0,B,", #?, q0,�0#!) is in TB and wtB(⌧) = 1.

• Let ⌧= (q, x , top= �, q0, f ) be in T .

– If f = pop, then ⌧B = (q, x ,�?, q0,"!) is in TB and wtB(⌧B) = wt(⌧). Furthermore,
for every � 2 �A, the transition (q0,",�?, q0,�!) with weight 1 is in TB.

– If f = push(�, fid) for some � 2 �A, then ⌧B = (q, x ,�?, q0,��!) is in TB and
wtB(⌧B) = wt(⌧).

– If f = stay(�) for some � 2 �A, then ⌧B = (q, x ,�?, q0,�!) is in TB and wtB(⌧B) =
wt(⌧).

• Let ⌧= (q, x , bottom, q0, f ) be in T .

– If f = push(�, fid) for some � 2 �A, then for every � 2 �A the transition ⌧B =
(q, x ,�?, (q0,�,�),"!) is in TB and wtB(⌧B) = wt(⌧). Furthermore, the transition
((q0,�,�),", #?, q0,��#!) with weight 1 is in TB.

– If f = stay(�) for some � 2 �A, then the transition ⌧B = (q, x ,�?, (q0,�),"!)
is in TB for every � 2 �A and wtB(⌧B) = wt(⌧). Furthermore, the transition
((q0,�),",#?, q0,�#!) with weight 1 is in TB.

• For every q 2 Q f and � 2 �A [ {#} the transition (q,",�?, fB,"!) with weight 1 is in
TB. Furthermore the transition ( fB,",�?, fB,"!) with weight 1 is in TB. É
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A:
$ c

q
$ c
A c

q

pop

B :
#
$

q
#
$

q̄
#
$
A

q

"! $!

Figure 4.1: Pushdown behaviour during the simulation of a transition ⌧= (q, a, top= A, q, pop) of the
(P1,⌃,K�disc)-automaton A by the (PD,⌃,K�disc)-automaton B which is induced by A.

Example 4.14. Recall the (P1,⌃,K�disc)-automaton A = ({q, f },⌃, ($, c), q, { f }, T,wt) from
Example 3.31. Clearly, A is in test normal form and �A = {B, A, $}. Then the (PD,⌃,K�disc)-
automaton induced by A is the automaton B = (QB,⌃,#, q0,B, { fB}, TB, wtB), where

QB = {q, f }[ {q̄, f̄ }[ {q0,B, fB}
[ {(q, B), (q, A), (q, $), ( f , B), ( f , A), ( f , $)}
[ {(q, B, B), (q, A, B), (q, $, B), (q, B, A), (q, A, A), (q, $, A),

(q, B, $), (q, A, $), (q, $, $), ( f , B, B), ( f , A, B), ( f , $, B),

( f , B, A), ( f , A, A), ( f , $, A), ( f , B, $), ( f , A, $), ( f , $, $)}.

Furthermore, we show based on different transitions from T , how the transitions in TB and
the weight assignment are constructed. First, consider the transition

⌧= (q, a, top= A, q, pop) 2 T

and recall that wt(⌧) = 2. To check that there is at least one symbol left on the pushdown
after applying a pop, the transition

(q, a, A?, q̄,"!)

with weight 2 is in TB, which switches into the auxiliary state q̄. This state q̄ can be left by
one of the transitions

(q̄,", B?, q, B!), (q̄,", A?, q, A!), and (q̄,", $?, q, $!),

which are additionally in TB, each with weight 0.1 The simulation of ⌧ is illustrated in Figure
4.1.
1 Recall that 0 is the 1 element of K�disc.
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A:
$ c

q
$ c
A c

q

push(A, fid)

B :
#
$

q
#

(q, $, A)
#
$
A

q

"! A$#!

Figure 4.2: Pushdown behaviour during the simulation of a transition ⌧= (q, b, bottom, q, push(A, fid))
of the (P1,⌃,K�disc)-automaton A by the (PD,⌃,K�disc)-automaton B which is induced by A.

As a second example, we consider the transition

⌧= (q, b, bottom, q, push(A, fid)) 2 T

and recall that wt(⌧) = 1. In order to test bottom before pushing the symbol A, the transitions

(q, b, B?, (q, B, A),"!), (q, b, A?, (q, A, A),"!), and (q, b, $?, (q, $, A),"!),

each with weight 1, are in TB. These transitions remove the topmost pushdown symbol and
save it, together with the target state of ⌧ and the symbol to be pushed, in their target state.
Now the symbol #, which simulates the bottom of the pushdown, can be tested. This is done
by one of the transitions

((q, B, A),",#?, q, AB#!), ((q, A, A),",#?, q, AA#!), and ((q, $, A),",#?, q, A$#!),

which are additionally in TB, each with weight 0. If this test is successful, the saved symbols
are pushed and the automaton switches into the target state of ⌧. For an illustration of this
simulation see Figure 4.2.

The remaining transitions of TB are constructed in a similar way and as described in
Definition 4.13. É

For the rest of this section let A = (Q,⌃, c0, q0,Q f , T,wt) be a (P1,⌃, K)-automaton
in test normal form and let B = (QB,⌃,#, q0,B, { fB}, TB,wtB) be the (PD,⌃, K)-
automaton induced by A.

To show the correctness of this construction, i.e., to prove that ||A|| = ||B||", we want to
indicate a bijection between the computations of A and B. For this, we define a function
⇡, which maps sequences of transitions over T to sets of sequences of transition over TB.
This “nondeterminism” (which means that one sequence is mapped to several sequences)
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4 Comparison of weighted pushdown automata and (P1,⌃, K)-automata

arises since a constructed transition not only depends on one transition in the preimage of ⇡,
but also on the current configuration of the pushdown. But we will show afterwards that ⇡
nevertheless will be helpful to define a function between computations of A and B.

Definition 4.15. We define a mapping ⇡: T ! P(T ⇤B) for every ⌧ 2 T as follows:

• if ⌧= (q, x , top= �, q0, pop), then
⇡(⌧) = {(q, x ,�?, q0,"!)(q0,",�?, q0,�!) | � 2 �A}

• if ⌧= (q, x , top= �, q0, push(�, fid)), then ⇡(⌧) = {(q, x ,�?, q0,��!)}

• if ⌧= (q, x , top= �, q0, stay(�)), then ⇡(⌧) = {(q, x ,�?, q0,�!)}

• if ⌧= (q, x , bottom, q0, push(�, fid)), then
⇡(⌧) = {(q, x ,�?, (q0,�,�),"!)((q0,�,�),",#?, q0,��#!) | � 2 �A}

• if ⌧= (q, x , bottom, q0, stay(�), then
⇡(⌧) = {(q, x ,�?, (q0,�),"!)((q0,�),",#?, q0,�#!) | � 2 �A}.

We can extend ⇡ to a mapping ⇡0 : T ⇤ ! P(T ⇤B) by defining ⇡0(") = {"} and ⇡0(⌧1 . . .⌧n) =
⇡(⌧1) . . .⇡(⌧n), for n� 1, ⌧1, . . . ,⌧n 2 T . In the following we identify ⇡ and ⇡0. É

If we now look at ⇡ more detailed, we notice two facts. There are transitions of B that are
not in the image of ⇡, such as the only transition of B which starts in an initial state as well
as transitions that reach the final state of B. For this reason, computations of A can only be
mapped to parts of computations of B, but not to complete computations2. Furthermore, it
does not suffice to restrict the domain of ⇡ to computations of A to avoid sequences that are
no parts of computations of B in its image. These two facts are illustrated in the following
example.

Example 4.16. Recall the (P1,⌃,K�disc)-automaton A = ({q, f },⌃, ($, c), q, { f }, T, wt) from
Example 3.31 and the (PD,⌃,K�disc)-automaton B = (QB,⌃, #, q0,B, { fB}, TB,wtB) induced by
A from Example 4.14.

Now consider the computation

✓ = (q, a, bottom, q, push(B, fid))(q, b, top= B, q, pop)(q,", bottom, f , stay($))

in ⇥A(ab). It is easy to see that the sequence

✓ 0 = (q, a, $?, (q, $, B),"!)((q, $, B),", #?, q, B$#!)(q, b, B?, q̄,"!)

(q̄,", A?, q, A!)(q,", $?, ( f , $),"!)(( f , $),",#?, f , $!)

2 Here, for the sake of brevity, we say that ✓ is mapped to ✓ 0 if ✓ 0 2 ⇡(✓ ), and the image of ⇡ is
S
✓ ⇡(✓ ).

36
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is in ⇡(✓ ) but is neither a computation nor a part of a computation of B (for example, the
predicate A? in the fourth transition cannot be successful). Also the sequence

✓ 00 = (q, a, $?, (q, $, B),"!)((q, $, B),", #?, q, B$#!)(q, b, B?, q̄,"!)

(q̄,", $?, q, $!)(q,", $?, ( f , $),"!)(( f , $),",#?, f , $!)

in ⇡(✓ ) is no computation of B, but it is a part of a computation. By adding the transition
⌧0 = (q0,B,", #?, q, $#!) at the beginning and the transitions ⌧1 = ( f ,", $?, fB,"!) and ⌧2 =
( fB,", #?, fB,"!) at the end of ✓ 00, we obtain that ⌧0✓

00⌧1⌧2 2 ⇥"B(ab). É

To complete parts of computations in the image of ⇡ to computations from B we introduce
the concept of extensions.

Definition 4.17. Let ✓ 2 T ⇤,

#1 = {(q,",�?, fB,"!) 2 TB | q 2Q f ,� 2 �A},
#2 = {( fB,",�?, fB,"!) 2 TB | � 2 �A},

and ⌧0 = (q0,B,",#?, q0,�0#!). We say that a sequence ✓ 0 2 T ⇤B extends ✓ if ✓ 0 2 ⇡(✓ )#1#
⇤
2

and ⌧0-extends ✓ if ✓ 0 2 ⌧0⇡(✓ )#1#
⇤
2.3 É

Example 4.18. Recall the (PD,⌃,K�disc)-automaton B = (QB,⌃,#, q0,B, { fB}, TB,wtB) from
Example 4.14 and the computation ✓ as well as the sequence ✓ 00 from Example 4.16. It is
easy to see that the sequence

(q0,B,",#?, q, $#!)✓ 00( f ,", A?, fB,"!)( fB,",#?, fB,"!)

⌧0-extends ✓ but is no computation of B since the predicate A? in the last but one transition
is not successful. É

As the previous example has shown, not all extensions of a q-computation ✓ from A
have to be computations (or parts of computations) of B. But we will prove now, roughly
speaking, that under all extensions of ✓ there is exactly one extension ✓ 0 which forms a
(q,")-computation of B with the same initial automaton configuration and, furthermore, ✓
and ✓ 0 are mapped by wt to the same sequence of values from K .

Lemma 4.19. Let q 2 Q, w 2 ⌃⇤, and ⌘ 2 �+. If ✓ is a q-computation in ⇥A(q, w,⌘), then
there is exactly one (q,")-computation ✓ 0 in ⇥"B(q, w,⌘#) s.t. ✓ 0 extends ✓ . Moreover,
wt(✓ ) = wt(✓ 0).

Proof. Let q 2Q, w 2 ⌃⇤, ⌘ 2 �+, and ✓ 2 ⇥A(q, w,⌘). We prove this statement by induction
on the length of ✓ .

3 Recall that we abbreviate the language concatenation {a}B by aB.
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First, let ✓ = ". As ✓ 2 ⇥A(q, w,⌘), this means q 2Q f and w= ". Moreover, ⇡(✓ ) = {"}.
It remains to show that there is exactly one ✓ 0 2 #1#

⇤
2 such that ✓ 0 2 ⇥"B(q, w,⌘#). For this,

assume that ⌘= �1 . . .�n for some n � 1 and �1, . . . ,�n 2 �A. Then ✓ 0 is uniquely given by
✓ 0 = (q,",�1?, fB,"!)( fB,",�2?, fB,"!) . . . ( fB,",�n?, fB,"!)( fB,",#?, fB,"!) 2 #1#

⇤
2.

By construction, wtB((q,",�1?, fB,"!)) = 1, wtB(( fB,",�i?, fB,"!)) = 1 for 1< i  n, and
wtB(( fB,", #?, fB,"!)) = 1. Therefore, wt(✓ 0) = " = wt(✓ ).

Now, let ✓ = ⌧✓1 for ⌧ 2 T , ✓1 2 T ⇤. In the following, we distinguish five cases of ⌧.

Case 1: Let ⌧ = (q, x , top = �, q0, pop) for some q, q0 2 Q, x 2 ⌃[ {"}, and � 2 �A. Then
w = xw0 for some w0 2 ⌃⇤ and ⌘ = �⌘0 for some ⌘0 2 � ⇤A. Since ✓ 2 ⇥A(q, w,⌘) it follows
that ✓1 2 ⇥A(q0, w0,⌘0). By induction hypothesis there is exactly one ✓ 01 2 ⇥"B(q0, w0,⌘0#)
such that ✓ 01 extends ✓1.

It remains to show that there is exactly one ⌧0 2 ⇡(⌧) with ⌧0✓ 01 2 ⇥"B(q, w,⌘#). Since ⌧
occurs in a computation and pops a symbol, we can assume that ⌘ consists of more than
one symbol and therefore ⌘0 = �⌘00 for some � 2 �A, ⌘00 2 � ⇤A. Then ⌧0 is uniquely given by
⌧0 = (q, x ,�?, q0,"!)(q0,",�?, q0,�!) since only this sequence is compatible with the assumed
pushdown configuration in the computation.

Furthermore, we have that

wt(⌧✓1) = wt(⌧)wt(✓1)
(IH)= wt(⌧)wt(✓ 01)

(⇤)
= wt(⌧0)wt(✓ 01) = wt(⌧0✓ 01),

where (⇤) holds since wt(⌧) = wtB((q, x ,�?, q0,"!)) and wtB((q0,",�?, q0,�!)) = 1 by con-
struction.

Case 2: Let ⌧ = (q, x , top = �, q0, push(�, fid)) for some q, q0 2 Q, x 2 ⌃ [ {"}, and
�,� 2 �A. Then w = xw0 for some w0 2 ⌃⇤ and since ✓ 2 ⇥A(q, w,⌘) it follows that ✓1 2
⇥A(q0, w0,�⌘). By induction hypothesis there is exactly one ✓ 01 2 ⇥"B(q0, w0,�⌘#) such that
✓ 01 extends ✓1.

It remains to show that there is exactly one ⌧0 2 ⇡(⌧) with ⌧0✓ 01 2 ⇥"B(q, w,⌘#). Since
⇡(⌧) = {(q, x ,�?, q0,��!)}, this is uniquely determined.

Furthermore, we have that

wt(⌧✓1) = wt(⌧)wt(✓1)
(IH)= wt(⌧)wt(✓ 01)

(⇤)
= wt(⌧0)wt(✓ 01) = wt(⌧0✓ 01),

where (⇤) holds since wt(⌧) = wtB(⌧0) by construction.

Case 3: Let ⌧ = (q, x , top = �, q0, stay(�)) for some q, q0 2 Q, x 2 ⌃[ {"}, and �,� 2 �A.
Then w = xw0 for some w0 2 ⌃⇤ and⌘ = �⌘0 for some⌘0 2 � ⇤A. Since ✓ 2 ⇥A(q, w,⌘) it follows
that ✓1 2 ⇥A(q0, w0,�⌘0). By induction hypothesis there is exactly one ✓ 01 2 ⇥"B(q0, w0,�⌘0#)
such that ✓ 01 extends ✓1.
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It remains to show that there is exactly one ⌧0 2 ⇡(⌧) with ⌧0✓ 01 2 ⇥"B(q, w,⌘#). Since
⇡(⌧) = {(q, x ,�?, q0,�!)}, this is uniquely determined.

Furthermore, we have that

wt(⌧✓1) = wt(⌧)wt(✓1)
(IH)= wt(⌧)wt(✓ 01)

(⇤)
= wt(⌧0)wt(✓ 01) = wt(⌧0✓ 01),

where (⇤) holds since wt(⌧) = wtB(⌧0) by construction.

Case 4: Let ⌧ = (q, x , bottom, q0, push(�, fid)) for some q, q0 2Q, x 2 ⌃[ {"}, and � 2 �A.
Then w = xw0 for some w0 2 ⌃⇤. Since ✓ 2 ⇥A(q, w,⌘) it follows that ✓1 2 ⇥A(q0, w0,�⌘).
By induction hypothesis there is exactly one ✓ 01 2 ⇥"B(q0, w0,�⌘#) such that ✓ 01 extends ✓1.

It remains to show that there is exactly one ⌧0 2 ⇡(⌧) with ⌧0✓ 01 2 ⇥"B(q, w,⌘#). Since
⌧ occurs in a computation and tests bottom, we can assume that there is only one symbol
left on the pushdown and therefore ⌘ = � for some � 2 �A. Then ⌧0 is uniquely given by
⌧0 = (q, x ,�?, (q0,�,�),"!)((q0,�,�),",#?, q0,��#!) since only this sequence is compatible
with the assumed pushdown configuration in the computation.

Furthermore, we have that

wt(⌧✓1) = wt(⌧)wt(✓1)
(IH)= wt(⌧)wt(✓ 01)

(⇤)
= wt(⌧0)wt(✓ 01) = wt(⌧0✓ 01),

where (⇤) holds since, by construction, we have that wt(⌧) = wtB((q, x ,�?, (q0,�,�),"!)) and
wtB(((q0,�,�),", #?, q0,��#!)) = 1.

Case 5: Let ⌧ = (q, x , bottom, q0, stay(�)) for some q, q0 2 Q, x 2 ⌃ [ {"}, and � 2 �A.
Then w= xw0 for some w0 2 ⌃⇤ and ⌘ = � for some � 2 �A. Since ✓ 2 ⇥A(q, w,⌘) it follows
that ✓1 2 ⇥A(q0, w0,�). By induction hypothesis there is exactly one ✓ 01 2 ⇥"B(q0, w0,�#) such
that ✓ 01 extends ✓1.

It remains to show that there is exactly one ⌧0 2 ⇡(⌧) with ⌧0✓ 01 2 ⇥"B(q, w,⌘#). By the
same argumentation as in Case 4, ⌧0 is uniquely given by
⌧0 = (q, x ,�?, (q0,�),"!)((q0,�),",#?, q0,�#!) since only this sequence is compatible with
the assumed pushdown configuration in the computation.

Furthermore, we have that

wt(⌧✓1) = wt(⌧)wt(✓1)
(IH)= wt(⌧)wt(✓ 01)

(⇤)
= wt(⌧0)wt(✓ 01) = wt(⌧0✓ 01),

where (⇤) holds since, by construction, we have that wt(⌧) = wtB((q, x ,�?, (q0,�),"!)) and
wtB(((q0,�),", #?, q0,�#!)) = 1. Ñ

Now, where we have seen that each q-computation of A is extended by exactly one
“compatible” (q,")-computation of B, we can define the following function.
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Definition 4.20. For every w 2 ⌃⇤ let

fw : ⇥A(w)! ⇥"B(w)

be the function which maps each ✓ 2 ⇥A(w) to the uniquely determined computation ✓ 0 2
⇥"B(w) that ⌧0-extends ✓ . É

Note that this function is indeed well-defined by Lemma 4.19 and since ⌧0 is the uniquely
determined transition (q0,B,", #?, q0,�0#!). It remains to show that, for every w 2 ⌃⇤, fw is
injective, surjective, and preserves the weight of a computation in K .

Let us start with proving the injectivity of fw for each w 2 ⌃⇤.

Lemma 4.21. For every w 2 ⌃⇤ it holds that fw is injective.

Proof. Let t 2 T ⇤B. We show the lemma by proving the following property for t:

Let t1, t2 2 T ⇤. If t 2 ⇡(t1)\⇡(t2) , then t1 = t2.

We prove this statement by induction on the length of t.
As induction basis let |t|= 0. Then t = " and it follows that t1 = t2 = ".
Now let |t| = n+ 1 for some n � 0 and assume that the property holds for every word

u 2 T ⇤B with |u|  n. Let t = ⌧t 0 for some ⌧ 2 TB, t 0 2 T ⇤B, and let t1, t2 2 T ⇤ such that
⌧t 0 2 ⇡(t1)\⇡(t2). In the following, we distinguish four cases of ⌧.

Case 1: Let ⌧ = (q, x ,�?, q0,⌘!) for some q, q0 2Q, x 2 ⌃[ {"}, � 2 �A, and ⌘ 2 �+A . Then
t1 = ⌧1 t 01 and t2 = ⌧2 t 02 for some ⌧1,⌧2 2 T such that ⌧ 2 ⇡(⌧1)\⇡(⌧2) and, by definition
of ⇡, ⌧1 = ⌧2 since all pieces of information of ⌧1 and ⌧2 are coded into ⌧.

Also, it follows that t 0 2 ⇡(t 01)\⇡(t 02) and, by the induction hypothesis, t 01 = t 02. Thus,
t1 = t2.

Case 2: Let ⌧ = (q, x ,�?, q0,"!) for some q 2Q, q0 2Q, x 2 ⌃[ {"}, and � 2 �A. Then we
must have that t 0 = ⌧0 t 00 with ⌧0 = (q0,",�?, q0,") for some � 2 �A as ⌧ only occurs followed
by such a second transition in the image of ⇡.

Furthermore, t1 = ⌧1 t 01 and t2 = ⌧2 t 02 for some ⌧1,⌧2 2 T such that ⌧⌧0 2 ⇡(⌧1)\⇡(⌧2).
By definition of ⇡, we have that ⌧1 = ⌧2.

Also, it follows that t 00 2 ⇡(t 01)\⇡(t 02) and, by the induction hypothesis, t 01 = t 02. Thus,
t1 = t2.

Case 3: Let ⌧= (q, x ,�?, (q0,�),"!) for some q 2Q, (q0,�) 2Q1, x 2 ⌃[ {"}, and � 2 �A.
Then we must have that t 0 = ⌧0 t 00 with ⌧0 = ((q0,�),", #?, q0,�#!) as ⌧ only occurs followed
by this second transition in the image of ⇡.
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Furthermore, t1 = ⌧1 t 01 and t2 = ⌧2 t 02 for some ⌧1,⌧2 2 T such that ⌧⌧0 2 ⇡(⌧1)\⇡(⌧2).
By definition of ⇡, we have that ⌧1 = ⌧2.

Also, it follows that t 00 2 ⇡(t 01)\⇡(t 02) and, by the induction hypothesis, t 01 = t 02. Thus,
t1 = t2.

Case 4: Let ⌧ = (q, x ,�?, (q0,�,�),"!) for some q 2 Q, (q0,�,�) 2 Q2, x 2 ⌃ [ {"}, and
� 2 �A. Then we must have that t 0 = ⌧0 t 00 with ⌧0 = ((q0,�,�),",#?, q0,��#!) as ⌧ only
occurs followed by this second transition in the image of ⇡.

Furthermore, t1 = ⌧1 t 01 and t2 = ⌧2 t 02 for some ⌧1,⌧2 2 T such that ⌧⌧0 2 ⇡(⌧1)\⇡(⌧2).
By definition of ⇡, we have that ⌧1 = ⌧2.

Also, it follows that t 00 2 ⇡(t 01)\⇡(t 02) and, by the induction hypothesis, t 01 = t 02. Thus,
t1 = t2.

Note that we need not to consider other forms of ⌧, since only the mentioned cases are in
the image of ⇡.

Now let w 2 ⌃⇤. We prove by contraposition that fw is injective. For this, we consider two
computations ✓1,✓2 2 ⇥A(w) such that fw(✓1) = fw(✓2). By definition of fw it follows that
⌧0⇡(✓1)#1#

⇤
2 \⌧0⇡(✓2)#1#

⇤
2 6= ;. Then ⇡(✓1)\⇡(✓2) 6= ; as the sequences in the image of ⇡

and in #1#
⇤
2 have no symbols in common. Therefore, there is a t 2 T ⇤B with t 2 ⇡(✓1)\⇡(✓2)

and it follows that ✓1 = ✓2. Thus, fw is injective. Ñ

For the next lemma, we need to analyse the structure of computations of B and obtain the
following observation:

Observation 4.22. For every n 2 N, w 2 ⌃⇤, and ✓ 2 ⇥"B(w) with ✓ = ⌧1 . . .⌧n, ⌧1, . . . ,⌧n 2
TB, there exists a k 2 [n] such that ⌧k = (q,",�?, fB,"!) for some q 2 Q and for each i
with k < i  n we have ⌧i = ( fB,",�i?, fB,"!) for some �i 2 �A [ {#}. Moreover, ⌧1 =
(q0,B,",#?, q0,�0#!), and we have that

(i) for every 2 i  k� 1, q 2Q and � 2 �A [ {#} it holds that ⌧i 6= (q,",�?, fB,"!) and
⌧i 6= ( fB,",�?, fB,"!),

(ii) for every 2  i  k � 2, q, q0 2 Q, x 2 ⌃ [ {"}, � 2 �A, q0 2 Q it holds that ⌧i =
(q, x ,�?, q0,"!) iff there is a � 2 �A such that ⌧i+1 = (q0,",�?, q0,�!),

(iii) for every 2  i  k � 2, q, q0 2 Q, x 2 ⌃ [ {"}, �,� 2 �A, and (q0,�,�) 2 Q2 it holds
that ⌧i = (q,",�?, (q0,�,�),"!) iff ⌧i+1 = ((q0,�,�), x , #?, q0,��#!), and

(iv) for every 2 i  k� 2, q, q0 2Q, x 2 ⌃[ {"}, �, � 2 �A, and (q0,�) 2Q1 it holds that
⌧i = (q,",�?, (q0,�),"!) iff ⌧i+1 = ((q0,�), x , #?, q0,�#!).

Now we can prove the surjectivity of fw for every w 2 ⌃⇤.
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Lemma 4.23. For every w 2 ⌃⇤ it holds that fw is surjective.

Proof. Let ✓ 0 2 T ⇤B. We show this lemma by proving the following property of ✓ 0 for all n 2 N:

Let q 2 Q, w 2 ⌃⇤, and ⌘ 2 �+. If ✓ 0 is a (q,")-computation in ⇥"B(q, w,⌘#) of length n,
then there is a q-computation ✓ in ⇥A(q, w,⌘) such that ✓ 0 extends ✓ .

We prove this statement by induction on the length n of ✓ 0. As there is no (q,")-computation
with length lower than 2 in ⇥"B(q, w,⌘#), the induction base is trivially true.

Now, let |✓ 0| = n+ 1 with n� 1 and ✓ 0 2 ⇥"B(q, w,⌘#). By Observation 4.22 we have that
✓ 0 is of the form ⌧1 . . .⌧k�1⌧k⌧k+1 . . .⌧n+1 for some k 2 [n+ 1] and ⌧1, . . . ,⌧n+1 2 TB, where
⌧k = (q,",�?, fB,"!) for some q 2Q, � 2 �A.

First, assume that k = 1. Then

✓ 0 = (q,",�1?, fB,"!)( fB,",�2?, fB,"!) . . . ( fB,",�n?, fB,"!)( fB,",#?, fB,"!)

for some �1, . . . ,�n 2 �A. Then q 2Q f , w = ", ⌘ = �1 . . .�n and ✓ = ". Thus, ✓ 2 ⇥A(q, w,⌘)
and ✓ 0 extends ✓ .

Now, let k > 1 and ✓ 0 = ⌧0✓ 01 for some ⌧0 2 TB. Assume that the property holds for every
word u 2 T ⇤B with |u| n. In the following, we distinguish five cases of ⌧0.

Case 1: Let ⌧0 = (q, x ,�?, q0,��!) for some q, q0 2 Q, x 2 ⌃ [ {"}, and �,� 2 �A. Then
w= xw0 for some w0 2 ⌃⇤ and ⌘= �⌘0 for some ⌘0 2 � ⇤A. Since ✓ 0 2 ⇥"B(q, w,⌘#) it follows
that ✓ 01 2 ⇥"B(q0, w0,�⌘#). By the induction hypothesis there is a ✓1 2 ⇥A(q0, w0,�⌘) such
that ✓ 01 extends ✓1.

Then let ✓ = ⌧✓1 with ⌧ = (q, x , top = �, q0, push(�, fid)). Thus, ✓ 2 ⇥A(q, w,⌘) and by
definition of ⇡ it is clear that ✓ 0 extends ✓ .

Case 2: Let ⌧0 = (q, x ,�?, q0,�!) for some q, q0 2 Q, x 2 ⌃ [ {"}, and �,� 2 �A. Then
w= xw0 for some w0 2 ⌃⇤ and ⌘= �⌘0 for some ⌘0 2 � ⇤A. Since ✓ 0 2 ⇥"B(q, w,⌘#) it follows
that ✓ 01 2 ⇥"B(q0, w0,�⌘0#). By the induction hypothesis there is a ✓1 2 ⇥A(q0, w0,�⌘0) such
that ✓ 01 extends ✓1.

Then let ✓ = ⌧✓1 with ⌧ = (q, x , top= �, q0, stay(�)). Thus, ✓ 2 ⇥A(q, w,⌘) and by defini-
tion of ⇡ it is clear that ✓ 0 extends ✓ .

Case 3: Let ⌧ = (q, x ,�?, q0,"!) for some q 2 Q, q0 2 Q, x 2 ⌃ [ {"}, and � 2 �A. By
Observation 4.22 we have that ✓ 01 is of the form (q0,",�?, q0,�!)✓ 02 for some � 2 �A and
✓ 02 2 T ⇤B. Then ⌘ = ��⌘0 for some ⌘0 2 � ⇤A and w = xw0 for some w0 2 ⌃⇤. Since ✓ 0 2
⇥"B(q, w,⌘#) it follows that ✓ 02 2 ⇥"B(q0, w0,�⌘0#). By the induction hypothesis there is a
✓1 2 ⇥A(q0, w0,�⌘0) such that ✓ 02 extends ✓1.
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Then let ✓ = ⌧✓1 with ⌧ = (q, x , top = �, q0, pop). Thus, ✓ 2 ⇥A(q, w,⌘) and by definition
of ⇡ it is clear that ✓ 0 extends ✓ .

Case 4: Let ⌧ = (q, x ,�?, (q0,�,�),"!) for some q 2 Q, (q0,�,�) 2 Q2, x 2 ⌃ [ {"}, and
� 2 �A. By Observation 4.22 ✓ 01 is of the form ((q0,�,�),",#?, q0,��#!)✓ 02 for some ✓ 02 2
T ⇤B. Then ⌘ = � and w = xw0 for some w0 2 ⌃⇤. Since ✓ 0 2 ⇥"B(q, w,⌘#) it follows that
✓ 02 2 ⇥"B(q0, w0,�⌘#). By the induction hypothesis there is a ✓1 2 ⇥A(q0, w0,�⌘) such that ✓ 02
extends ✓1.

Then let ✓ = ⌧✓1 with ⌧ = (q, x , bottom?, q0, push(�, fid)). Thus, ✓ 2 ⇥A(q, w,⌘) and by
definition of ⇡ it is clear that ✓ 0 extends ✓ .

Case 5: Let ⌧= (q, x ,�?, (q0,�),"!) for some q 2Q, (q0,�) 2Q1, x 2 ⌃[ {"}, and � 2 �A.
By Observation 4.22 we must have that ✓ 01 is of the form ((q0,�),",#?, q0,�#!)✓ 02 for some
✓ 02 2 T ⇤B. Then ⌘= � and w= xw0 for some w0 2 ⌃⇤. Since ✓ 0 2 ⇥"B(q, w,⌘#) it follows that
✓ 02 2 ⇥"B(q0, w0,�#). By the induction hypothesis there is a ✓1 2 ⇥A(q0, w0,�) such that ✓ 02
extends ✓1.

Then let ✓ = ⌧✓1 with ⌧= (q, x , bottom?, q0, stay(�)). Thus, ✓ 2 ⇥A(q, w,⌘) and by defi-
nition of ⇡ it is clear that ✓ 0 extends ✓ .

Now let w 2 ⌃⇤ and ✓ 0 2 ⇥"B(w). By the construction of B we must have that ✓ 0 is of the
form (q0,B,",#?, q0,�0#!)✓ 01 where ✓ 01 is a (q0,")-computation in ⇥"B(q0, w,�0#). Then, by
the statement just shown, there is a q0-computation ✓ 2 ⇥A(q0, w,�0) such that ✓ 01 extends
✓ . It follows that ✓ 0 ⌧0-extends ✓ and therefore, fw(✓ ) = ✓ 0. Thus, fw is surjective. Ñ

As a last step, before proving the main result of this section, we will show that fw preserves
the weight of each computation in its domain for every w 2 ⌃⇤.

Lemma 4.24. For every w 2 ⌃⇤, ✓ 2 ⇥A(w) it holds that wt(✓ ) = wtB( fw(✓ )).

Proof. Let w 2 ⌃⇤ and ✓ 2 ⇥A(q0, w, c0). Furthermore, recall that c0 = (�0, c) for some �0 2 �
and ⌧0 = (q0,B,",#?, q0,�0#!). By Lemma 4.19 there is exactly one (q0,")-computation
✓ 0 2 ⇥"B(q0, w,�0#) such that ✓ 0 extends ✓ and wt(✓ 0) = wt(✓ ). Therefore, fw(✓ ) = ⌧0✓

0.
Since wtB(⌧0) = 1, it follows that wt(✓ 0) = wt(⌧0✓

0). By Lemma 4.7 it holds that wt(✓ ) =
wtB(⌧0✓

0). Thus, wt(✓ ) = wtB( fw(✓ )). Ñ

With these results we can now prove the main issue of this section – Lemma 4.10, which
stated that each (P1,⌃, K)-recognizable language is also (PD,⌃, K)-recognizable with empty
pushdown.

Proof of Lemma 4.10. Let A= (Q,⌃, c0, q0,Q f , T,wt) be a (P1,⌃, K)-automaton. By Lemma
4.12 we can assume that A is in test normal form. Then we construct a (PD,⌃, K)-automaton
B = (QB,⌃, #, q0,B, { fB}, TB,wtB) such that B is the automaton induced by A. Let, for every
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w 2 ⌃⇤, fw : ⇥A(w)! ⇥"B(w) as in Definition 4.20. By Lemma 4.21 and 4.23 this function
is injective and surjective. Moreover, by 4.24 for every w 2 ⌃⇤, ✓ 2 ⇥A(w) it holds that
wt(✓ ) = wtB( fw(✓ )). Thus, for every w 2 ⌃⇤ we have that ⇥A(w) and ⇥"B(w) are in a one-to-
one correspondence. Therefore, for every w 2 ⌃⇤ we obtain

||A||(w) =
X

✓2⇥A(w)

wt(✓ ) =
X

✓2⇥A(w)

wtB( fw(✓ )) =
X

✓ 02⇥"B(w)
wtB(✓ 0) = ||B||"(w).

Thus, ||A||= ||B||". Ñ
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4.2 (PD,⌃, K)-automata can be simulated by (P1,⌃, K)-automata

The aim of this section is to show formally that each (PD,⌃, K)-automaton accepting with
empty pushdown can be simulated by some (P1,⌃, K)-automaton. That means we will
show that for each (PD,⌃, K)-automaton A there exists a (P1,⌃, K)-automaton B such that
||A||" = ||B||, which is stated by the following lemma.

Lemma 4.25. Let r : ⌃⇤ ! K be a weighted language. If r is (PD,⌃, K)-recognizable with
empty pushdown, then r is (P1,⌃, K)-recognizable.

To prove this lemma, we proceed as follows. In a first step, we give a definition of the
(P1,⌃, K)-automaton B which is induced by some (PD,⌃, K)-automaton A. Afterwards, we
define for every word w 2 ⌃⇤ a function between computations on w of A and B, and show
that this function is injective, surjective and weight-preserving.

For the construction we have to take care of a few differences between (PD,⌃, K)-automata
and (P1,⌃, K)-automata. Since A can push in one step several symbols to the pushdown, we
have to divide transitions which contain such an instruction into a sequence of transitions in
B. As B must not have an empty pushdown, it carries the additional symbol # at the bottom
of the pushdown. Moreover, since A accepts with empty pushdown, B has to test bottom
before switching into a final state.

Definition 4.26. Let A = (Q,⌃, c0, q0,Q f , T,wt) be a (PD,⌃, K)-automaton. Furthermore,
let �A be the finite set of pushdown symbols occurring in transitions of A and let # be a
symbol such that �A \ {#} = ;. The (P1,⌃, K)-automaton induced by A is the automaton
B = (QB,⌃, c0,B, q0,B, { f }, TB,wtB) with some elements q0,B, f /2Q such that

• QB = {q0,B, f } [Q [Q⇧, where Q⇧ = (Q ⇥⇧⇥ [k]), ⇧ = {⇡ 2 � ⇤A | there is a ⌧ 2 T
containing ⇡! as instruction and |⇡|� 2}, and k =max({|⇡| | ⇡ 2 ⇧}),4

• c0,B = (#, c).

Moreover, TB and wtB are defined as follows:

• The transition (q0,B,", bottom, q0, push(c0, fid)) with weight 1 is in TB.

• Let ⌧= (q, x ,�?, q0,⇡!) be in T .

– If ⇡ = ", then the transition ⌧0 = (q, x , top = �, q0, pop) is in TB and wtB(⌧0) =
wt(⌧).

– If ⇡= � for some � 2 �A, then the transition ⌧0 = (q, x , top= �, q0, stay(�)) is in
TB and wtB(⌧0) = wt(⌧).

4 Recall that we use as convention max(;) = 0.
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– If ⇡ = �1 . . .�n with n > 1,�i 2 �A, i 2 [n], then the transition ⌧0 = (q, x , top =
�, (q0,⇡, n), stay(�n)) with wtB(⌧0) = wt(⌧) is in TB. Additionally, the transitions
((q0,⇡, i),", top = �i , (q0,⇡, i � 1), push(�i�1, fid)) for 2< i  n and the transition
((q0,⇡, 2),", top= �2, q0, push(�1, fid)), each with weight 1, are in TB.

– For every q 2Q f the transition (q,", bottom, f , stay(#))with weight 1 is in TB. É
To demonstrate this construction, for the sake of brevity and clarity, we introduce a new

example. Intuitively, the now considered automaton discounts all words over ⌃ = {a, b}
which are of the form an ba2n for some n � 0 in the unital valuation monoid K�disc, the
remaining words over ⌃ are mapped to �1.

Example 4.27. Let ⌃ be the alphabet ⌃ = {a, b}. We consider the (PD,⌃,K�disc)-automaton
A= ({q, f },⌃, B, q, { f }, T,wt), where the set T contains the following transitions:

⌧1 = (q, a, B?, q, BAA!) and wt(⌧1) = 2,

⌧3 = (q, b, B?, q, A!) and wt(⌧3) = 1,

⌧2 = (q, a, A?, q,"!) and wt(⌧2) = 2,

⌧4 = (q,", A?, f ,"!) and wt(⌧4) = 0.

By applying Definition 4.26 we obtain as the (P1,⌃, K)-automaton induced by A the
automaton B = (QB,⌃, c0,B, q0,B, { fB}, TB,wtB) with some elements q0,B, fB /2 {q, f } and
where

• the initial configuration c0,B = (#,c) for # /2 {A, B}, and

• QB = {q0,B, fB}[ {q, f } [
{(q, BAA, 3), (q, BAA, 2), (q, BAA, 1), ( f , BAA, 3), ( f , BAA, 2), ( f , BAA, 1)}.

Moreover, we have that TB contains the following transitions which we want to explain
shortly. For this consider the transition

⌧1 = (q, a, B?, q, BAA!) 2 T

which replaces the topmost pushdown symbol B by the symbol A and pushes additionally
BA. Recall that wt(⌧1) = 2. This pushdown behaviour can be simulated in B with a stay
instruction followed by two push instructions. For that the transition

(q, a, top= B, (q, BAA, 3), stay(A))

with weight 2 as well as the transitions

((q, BAA, 3),", top= A, (q, BAA, 2), push(A, fid))

and
((q, BAA, 2),", top= A, q, push(B, fid)),

both with weight 0, are in TB. For an illustration of the simulation of the pushdown behaviour
of A by B in this concrete case see Figure 4.3.

The remaining transitions of TB are constructed as described in Definition 4.26. É
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Figure 4.3: Simulation of a transition ⌧= (q, a, B?, q, BAA!) of the automaton A by the automaton B.

For the remaining section let A = (Q,⌃, c0, q0,Q f , T,wt) be a (PD,⌃, K)-automaton
and let B = (QB,⌃, c0,B, q0,B, { f }, TB, wtB) be the (P1,⌃, K)-automaton induced by
A.

Now we want to show that the weighted language recognized by A with empty pushdown
is exactly the weighted language recognized by B. This can be achieved in a way similar
to the proof structure of Lemma 4.10. We will indicate a mapping ' between sequences of
transitions from A and B, respectively. From this mapping we can then derive a bijection
between computations of A and computations of B. In contrast to the function ⇡ in Section
4.1 there appears no “nondeterminism” in ' – from each sequence of transitions from A one
can derive exactly one sequence of transitions from B.

Definition 4.28. We define a mapping ' : T ! T ⇤B for every ⌧ 2 T as follows:

• if ⌧= (q, x ,�?, q0,"!), then '(⌧) = (q, x , top= �, q0, pop),

• if ⌧= (q, x ,�?, q0,�!) for some � 2 �A, then '(⌧) = (q, x , top= �, q0, stay(�)), and

• if ⌧= (q, x ,�?, q0,⇡!) for some n� 2, ⇡= �1 . . .�n with �i 2 �A, i 2 [n], then

'(⌧) = (q, x , top= �, (q0,⇡, n), stay(�n))

((q0,⇡, n),", top= �n, (q0,⇡, n� 1), push(�n�1, fid))
...

((q0,⇡, 2),", top= �2, q0, push(�1, fid)).

Then ' can be extended to a mapping '0 : T ⇤ ! T ⇤B such that '0(") = " and '0(⌧1 . . .⌧n) =
'(⌧1) . . .'(⌧n) for n� 1, ⌧1, . . . ,⌧n 2 T . In the following we identify ' and '0. É
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Similar to ⇡ in the image of ' certain transitions of B are missing. For an example of
this situation, regard the unique transition starting with the initial state of B. To consider
nevertheless computations from B we introduce the notion of extensions similar to Definition
4.17.

Definition 4.29. Let ✓ 2 T ⇤, # f = {(q,", bottom, f , stay(#)) 2 TB | q 2 Q f }, and let ⌧0 =
(q0,B,", bottom, q0, push(c0, fid)). We say that a sequence ✓ 0 2 T ⇤B extends ✓ if ✓ 0 2 '(✓ )# f

and ⌧0-extends ✓ if ✓ 0 2 ⌧0'(✓ )# f . É

Then we can prove the following lemma.

Lemma 4.30. Let q 2 Q, w 2 ⌃⇤, and ⌘ 2 � ⇤. If ✓ is a (q,")-computation in ⇥"A(q, w,⌘),
then there is exactly one q-computation ✓ 0 in ⇥B(q, w,⌘#) s.t. ✓ 0 extends ✓ . Moreover,
wt(✓ ) = wt(✓ 0).

Proof. Let q 2Q, w 2 ⌃⇤, ⌘ 2 � ⇤, and ✓ 2 ⇥"A(q, w,⌘). We prove this statement by induction
on the length of ✓ .

First, let ✓ = ". As ✓ 2 ⇥"A(q, w,⌘), this means q 2 Q f , w = " and ⌘ = ". Moreover,
'(✓ ) = ". It remains to show that there is exactly one ✓ 0 2 # f such that ✓ 0 2 ⇥B(q, w,⌘#).
This is is uniquely given by ✓ 0 = (q,", bottom, f , stay(#)).

By construction, wtB((q,", bottom, f , stay(#))) = 1. Therefore, wt(✓ 0) = " = wt(✓ ).
Now, let ✓ = ⌧✓1 for some ⌧ 2 T and ✓1 2 T ⇤. In the following, we consider a case distinc-

tion on ⌧.

Case 1: Let ⌧ = (q, x ,�?, q0,"!) for some q, q0 2Q, x 2 ⌃[ {"}, and � 2 �A. Then w = xw0

for some w0 2 ⌃⇤ and ⌘ = �⌘0 for some ⌘0 2 � ⇤A. Since ✓ 2 ⇥"A(q, w,⌘) it follows that
✓1 2 ⇥"A(q0, w0,⌘0). By the induction hypothesis there is exactly one ✓ 01 2 ⇥B(q0, w0,⌘0#) such
that ✓ 01 extends ✓1. Then ⌧0 is uniquely determined by ⌧0 = '(⌧) = (q, x , top = �, q0, pop)
and ⌧0✓ 01 2 ⇥B(q, w,⌘#).

Furthermore, we have that

wt(⌧✓1) = wt(⌧)wt(✓1)
(IH)= wt(⌧)wt(✓ 01)

(⇤)
= wt(⌧0)wt(✓ 01) = wt(⌧0✓ 01),

where (⇤) holds since wt(⌧) = wtB(⌧0) by construction.

Case 2: Let ⌧= (q, x ,�?, q0,�!) for some q, q0 2Q, x 2 ⌃[ {"}, and �, � 2 �A. Then w=
xw0 for some w0 2 ⌃⇤ and ⌘ = �⌘0 for some ⌘0 2 � ⇤A. Since ✓ 2 ⇥"A(q, w,⌘) it follows that ✓1 2
⇥"A(q

0, w0,�⌘0). By the induction hypothesis there is exactly one ✓ 01 2 ⇥B(q0, w0,�⌘0#) such
that ✓ 01 extends ✓1. Then ⌧0 is uniquely determined by ⌧0 = '(⌧) = (q, x , top = �, q0, stay(�))
and ⌧0✓ 01 2 ⇥B(q, w,⌘#).

Furthermore, we have that

wt(⌧✓1) = wt(⌧)wt(✓1)
(IH)= wt(⌧)wt(✓ 01)

(⇤)
= wt(⌧0)wt(✓ 01) = wt(⌧0✓ 01),
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where (⇤) holds since wt(⌧) = wtB(⌧0) by construction.

Case 3: Let ⌧ = (q, x ,�?, q0,⇡!) for some q, q0 2 Q, x 2 ⌃ [ {"}, � 2 �A, and for some
n � 2, ⇡ = �1 . . .�n with �i 2 �A, i 2 [n]. Then w= xw0 for some w0 2 ⌃⇤ and ⌘ = �⌘0 for
some ⌘0 2 � ⇤A. Since ✓ 2 ⇥"A(q, w,⌘) it follows that ✓1 2 ⇥"A(q0, w0,⇡⌘0). By the induction
hypothesis there is exactly one ✓ 01 2 ⇥B(q0, w0,⇡⌘0#) such that ✓ 01 extends ✓1. Then

⌧0 = '(⌧) =(q, x , top= �, (q0,⇡, n), stay(�n))

((q0,⇡, n),", top= �n, (q0,⇡, n� 1), push(�n�1, fid))
...

((q0,⇡, 2),", top= �2, q0, push(�1, fid))

and ⌧0✓ 01 2 ⇥B(q, w,⌘#).
Furthermore, we have that

wt(⌧✓1) = wt(⌧)wt(✓1)
(IH)= wt(⌧)wt(✓ 01)

(⇤)
= wt(⌧0)wt(✓ 01) = wt(⌧0✓ 01),

where (⇤) holds since by construction wt(⌧) = wtB((q, x , top = �, (q0,⇡, n), stay(�n))) and
the remaining transitions of ⌧0 are of weight 1. Ñ

As a consequence of Lemma 4.30 we can now define for every word w 2 ⌃⇤ a function gw

which assigns to each computation from ⇥"A(w) a computation from ⇥B(w).

Definition 4.31. For every w 2 ⌃⇤ let

gw : ⇥"A(w)! ⇥B(w)

be the function which maps each ✓ 2 ⇥"A(w) to the uniquely determined computation ✓ 0 2
⇥B(w) that ⌧0-extends ✓ . É

Note that this function is indeed well defined by Lemma 4.30 and since ⌧0 is the uniquely
determined transition (q0,B,", bottom, q0, push(c0, fid)). It remains to show that, for every
w 2 ⌃⇤, gw is injective, surjective, and preserves the weight of a computation in K .

Let us start with proving the injectivity of gw for each w 2 ⌃⇤.

Lemma 4.32. For every w 2 ⌃⇤ it holds that gw is injective.

Proof. Let t 2 T ⇤B. We show the lemma by proving the following property of t:

Let t1, t2 2 T ⇤. If t = '(t1) = '(t2) , then t1 = t2.

We prove this statement by induction on the length of t.
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As induction basis let |t|= 0. Then t = " and it follows that t1 = t2 = ".
Now let |t| = n+ 1 for some n � 0 and assume that the property holds for every word

u 2 T ⇤B with |u|  n. Let t = ⌧t 0 for some ⌧ 2 TB, t 0 2 T ⇤B, and let t1, t2 2 T ⇤ such that
⌧t 0 = '(t1) = '(t2). In the following, we distinguish two cases of ⌧.

Case 1: Let ⌧ = (q, x , top = �, q0, f ) for some q, q0 2 Q, x 2 ⌃ [ {"}, � 2 �A, and f 2
{pop} [ {stay(�) | � 2 �A}. Then t1 = ⌧1 t 01 and t2 = ⌧2 t 02 for some ⌧1,⌧2 2 T such that
'(⌧1) = '(⌧2) = ⌧ and, by definition of ⇡, ⌧1 = ⌧2 since all pieces of information of ⌧1 and
⌧2 are coded into ⌧.

Also, it follows that t 0 = '(t 01) = '(t
0
2) and, by induction hypothesis, t 01 = t 02. Thus, t1 = t2.

Case 2: Let ⌧ = (q, x , top = �, (q0,⇡, n), stay(�n)) for some n � 2, q 2 Q, x 2 ⌃ [ {"},
� 2 �A, ⇡ = �1 . . .�n with �1, . . . ,�n 2 �A, and (q0,⇡, n) 2 Q⇧. Then we must have that
t 0 = ⇢n . . .⇢2 t 00 with

⇢n = ((q0,⇡, n),", top= �n, (q0,⇡, n� 1), push(�n�1, fid)),
...

⇢2 = ((q0,⇡, 2),", top= �2, q0, push(�1, fid)),

since ⌧ only occurs followed by these transitions in the image of '.

Furthermore, t1 = ⌧1 t 01 and t2 = ⌧2 t 02 for some ⌧1,⌧2 2 T such that '(⌧1) = '(⌧2) =
⌧⇢n . . .⇢2. By definition of ', we have that ⌧1 = ⌧2.

Also, it follows that t 00 = '(t 01) = '(t
0
2) and, by induction hypothesis, t 01 = t 02. Thus,

t1 = t2.

Note that we need not to consider other forms of ⌧, since only the mentioned cases are in
the image of '.

Now let w 2 ⌃⇤. We prove by contraposition that gw is injective. For this, we consider
two computations ✓1,✓2 2 ⇥"A(w) such that gw(✓1) = gw(✓2). By definition of gw it follows
that ⌧0'(✓1)# f \ ⌧0'(✓2)# f 6= ;. Then '(✓1) = '(✓2). Therefore, there is a t 2 T ⇤B with
t = '(✓1) = '(✓2) and it follows that ✓1 = ✓2. Thus, gw is injective. Ñ

For the next lemma, we need to analyse the structure of computations of B and obtain the
following observation:

Observation 4.33. Let n 2 N, w 2 ⌃⇤, and ✓ 2 ⇥B(w) with ✓ = ⌧1 . . .⌧n, where ⌧1, . . . ,⌧n 2
TB. For every m 2 N, i 2 [n�m], q 2Q, x 2 ⌃[ {"}, � 2 �A, ⇡ = �1 . . .�m with �1, . . . ,�m 2
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�A, and (q0,⇡, 2), . . . , (q0,⇡, m) 2Q⇧ we have that

⌧i = (q, x , top= �, (q0,⇡, m), stay(�m))

iff ⌧i+1 = ((q0,⇡, m),", top= �m, (q0,⇡, m� 1), push(�m�1, fid))
...

iff ⌧i+m�1 = ((q0,⇡, 2),", top= �2, q0, push(�1, fid)).

Now we can proceed with proving the surjectivity of gw for every w 2 ⌃⇤.

Lemma 4.34. For every w 2 ⌃⇤ it holds that gw is surjective.

Proof. Let ✓ 0 2 T ⇤B. We show this lemma by proving the following property of ✓ 0 for all n 2 N:

Let q 2Q, w 2 ⌃⇤, and ⌘ 2 � ⇤. If ✓ 0 is a q-computation in ⇥B(q, w,⌘#) of length n, then
there is a (q,")-computation ✓ in ⇥"A(q, w,⌘) such that ✓ 0 extends ✓ .

We prove this statement by induction on the length n of ✓ 0. As there is no q-computation
with length 0 in ⇥B(q, w,⌘#), let n = 1 and ✓ 0 = (q,", bottom, f , stay(#)). Then q 2 Q f ,
w= ", ⌘ = ", and ✓ = ". Thus, ✓ 2 ⇥"A(q, w,⌘) and ✓ 0 extends ✓ .

Now, let |✓ 0| = n + 1 for some n � 1 and ✓ 0 = ⌧0✓ 01 for some ⌧0 2 TB and such that
✓ 0 2 ⇥B(q, w,⌘#). Assume that the property holds for every word u 2 T ⇤B with |u| n. In the
following, we distinguish three cases of ⌧0.

Case 1: Let ⌧0 = (q, x , top= �, q0, pop) for some q, q0 2Q, x 2 ⌃[ {"}, and � 2 �A. Then
w= xw0 for some w0 2 ⌃⇤ and ⌘= �⌘0 for some ⌘0 2 � ⇤A. Since ✓ 0 2 ⇥B(q, w,⌘#) it follows
that ✓ 01 2 ⇥B(q0, w0,⌘0#). By induction hypothesis there is a ✓1 2 ⇥"A(q0, w0,⌘0) such that ✓ 01
extends ✓1.

Then let ✓ = ⌧✓1 with ⌧ = (q, x ,�?, q0,"!). Thus, ✓ 2 ⇥"A(q, w,⌘) and by definition of ' it
is clear that ✓ 0 extends ✓ .

Case 2: Let ⌧0 = (q, x , top= �, q0, stay(�)) for some q, q0 2Q, x 2 ⌃[ {"}, and �, � 2 �A.
Then w = xw0 for some w0 2 ⌃⇤ and ⌘ = �⌘0 for some ⌘0 2 � ⇤A. Since ✓ 0 2 ⇥B(q, w,⌘#) it
follows that ✓ 01 2 ⇥B(q0, w0,�⌘0#). By induction hypothesis there is a ✓1 2 ⇥"A(q0, w0,�⌘0)
such that ✓ 01 extends ✓1.

Then let ✓ = ⌧✓1 with ⌧ = (q, x ,�?, q0,�!). Thus, ✓ 2 ⇥"A(q, w,⌘) and by definition of ' it
is clear that ✓ 0 extends ✓ .

Case 3: Let ⌧ = (q, x , top = �, (q0,⇡, n), stay(�n)) for some n � 2, q 2 Q, x 2 ⌃ [ {"},
� 2 �A, ⇡ = �1 . . .�n with �1, . . . ,�n 2 �A, and (q0,⇡, n) 2Q⇧. By Observation 4.33 we must
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have that ✓ 01 is of the form

((q0,⇡, n),", top= �n, (q0,⇡, n� 1), push(�n�1, fid))
...

((q0,⇡, 2),", top= �2, q0, push(�1, fid))✓ 02
for some ✓ 02 2 T ⇤B. Furthermore, ⌘ = �⌘0 for some ⌘0 2 � ⇤A and w = xw0 for w0 2 ⌃⇤. Since
✓ 0 2 ⇥B(q, w,⌘#) it follows that ✓ 02 2 ⇥B(q0, w0,⇡⌘0#). By induction hypothesis there is a
✓1 2 ⇥"A(q0, w0,⇡⌘0) such that ✓ 02 extends ✓1.

Then let ✓ = ⌧✓1 with ⌧ = (q, x ,�?, q0,⇡!). Thus, ✓ 2 ⇥"A(q, w,⌘) and by definition of ' it
is clear that ✓ 0 extends ✓ .

Now let w 2 ⌃⇤ and ✓ 0 2 ⇥B(w). By the construction of B we must have that ✓ 0 is of
the form (q0,B,", bottom, q0, push(c0, fid))✓ 01 where ✓ 01 is a q0-computation in ⇥B(q0, w, c0#).
Then, by the statement just shown, there is a (q0,")-computation ✓ 2 ⇥"A(q0, w, c0) such
that ✓ 01 extends ✓ . It follows that ✓ 0 ⌧0-extends ✓ and therefore, gw(✓ ) = ✓ 0. Thus, gw is
surjective. Ñ

As a last step, before proving the main result of this section, we will show that gw preserves
the weight of each computation in its domain for every w 2 ⌃⇤.
Lemma 4.35. For every w 2 ⌃⇤, ✓ 2 ⇥"A(w) it holds that wt(✓ ) = wtB(gw(✓ )).

Proof. Let w 2 ⌃⇤ and ✓ 2 ⇥"A(q0, w, c0). Recall that ⌧0 = (q0,B,", bottom, q0, push(c0, fid)).
By Lemma 4.30 there is exactly one q0-computation ✓ 0 2 ⇥B(q0, w, c0#) such that ✓ 0 extends
✓ and wt(✓ 0) = wt(✓ ). Therefore, gw(✓ ) = ⌧0✓

0. Since wtB(⌧0) = 1, it follows that wt(✓ 0) =
wt(⌧0✓

0). By Lemma 4.7 it holds that wt(✓ ) = wtB(⌧0✓
0). Thus, wt(✓ ) = wtB(gw(✓ )). Ñ

With these results we can now prove the main issue of this section – Lemma 4.25 which
stated that each weighted language that is (PD,⌃, K)-recognizable with empty pushdown is
also (P1,⌃, K)-recognizable.

Proof of Lemma 4.25. Let A = (Q,⌃, c0, q0,Q f , T,wt) be a (PD,⌃, K)-automaton. We con-
struct a (P1,⌃, K)-automaton B = (QB,⌃, c0,B, q0,B, { f }, TB,wtB) such that B is the automaton
induced by A. Let, for every w 2 ⌃⇤, gw : ⇥"A(w)! ⇥B(w) as in Definition 4.31. By Lemma
4.32 and 4.34 this function is injective and surjective. Moreover, by Lemma 4.35 for every
w 2 ⌃⇤ and ✓ 2 ⇥"A(w) it holds that wt(✓ ) = wtB(gw(✓ )). Thus, for every w 2 ⌃⇤ we have
that ⇥"A(w) and ⇥B(w) are in a one-to-one correspondence. Therefore, for every w 2 ⌃⇤ we
obtain

||A||"(w) =
X

✓2⇥"A(w)
wt(✓ ) =
X

✓2⇥"A(w)
wtB(gw(✓ )) =

X

✓ 02⇥B(w)

wtB(✓ 0) = ||B||(w).

Thus, ||A||" = ||B||. Ñ
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(S,⌃, K)-automaton

In this chapter we will characterize the weighted language recognized by an (S,⌃, K)-
automaton as the image of the language recognized by an unweighted (S,�)-automaton
under a weighted alphabetic morphism. For this, we first recall from [DV13] the concept of
(weighted) alphabetic morphism.

5.1 Monomes and alphabetic morphisms

In this section we define monomes, alphabetic morphisms and related concepts. Weighted
languages can be considered as formal power series – each weighted language is a (possibly
infinite) sum of monomials. In this sense, monomes1 are the “simplest” series, which associate
a non zero value to at most one word.

Definition 5.1. A mapping r : ⌃⇤ ! K is called a monome if supp(r) is empty or a singleton.
If supp(r) = {w}, then we also write r(w).w instead of r. We let K[⌃[ {"}] denote the set of
all monomes with support in ⌃[ {"}. É

Definition 5.2. Let � be an alphabet and let h: �! K[⌃[ {"}] be a mapping. Then the
alphabetic morphism induced by h is the mapping h0 : �⇤ ! Khh⌃⇤ii such that for every n� 0,
�1, . . . ,�n 2�with h(�i) = ai .yi , i 2 [n], we have h0(�1 . . .�n) = val(a1 . . . an).y1 . . . yn . É

Note that h0(v) is a monome for every v 2 �⇤, and h0(") = 1.". If L ✓ �⇤ such that the
family (h0(v) | v 2 L) is locally finite or if K is complete, we let h0(L) =

P
v2L h0(v). Note

that whenever we write h0(L) we require that (h0(v) | v 2 L) is locally finite in the case
that K is not complete. In the sequel we will use the following convention. If we write
“alphabetic morphism h: �! K[⌃[ {"}]”, then we mean the alphabetic morphism induced
by h. Furthermore, if K = B then sometimes in this work we write “h(a) = b” instead of
“h(a) = 1.b”.

Next we define a special case of alphabetic morphisms.

1 Note that we write in the following monome instead of monomial since this name has become established in the
literature on unital valuation monoids.
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Definition 5.3. Let K = B and let h: �! K[⌃[ {"}]. If for every � 2� the support of h(�)
is {�} for some � 2 ⌃, then we call h0 a letter-to-letter morphism. É

Note that in this case the alphabetic morphism induced by h has the property that for every
v 2�⇤, supp(h0(v)) contains at most one element and if supp(h0(v)) = {w} for some w 2 ⌃⇤,
then the lengths of w and v are equal.

If the alphabetic morphism induced by h: �! K[⌃[ {"}] is a letter-to-letter morphism,
then we often write h: �! K[⌃].

5.2 Separating the weights

The aim of this section is to prove the following theorem.

Theorem 5.4. For every r 2 Khh⌃⇤ii the following two statements are equivalent:

(i) r is (S,⌃, K)-recognizable.

(ii) There are an alphabet�, an unambiguous "-free (S,�)-automaton B, and an alphabetic
morphism h :�! K[⌃[ {"}] such that r = h(L(B)).

This theorem follows directly from Lemmas 5.5 and 5.7. The first one generalizes [DV13,
Lemma 3].

Lemma 5.5. Let r 2 Khh⌃⇤ii. If r is (S,⌃, K)-recognizable, then there are an alphabet �, an
unambiguous "-free (S,�)-automaton B, and an alphabetic morphism h :�! K[⌃[ {"}]
such that r = h(L(B)).

Proof. Let A = (Q,⌃, c0, q0,Q f , T,wt) be an (S,⌃, K)-automaton. We construct the (S, T )-
automaton B = (Q, T, c0, q0,Q f , T 0) and the mapping h: T ! K[⌃ [ {"}] such that, if ⌧ =
(q, x , p, q0, f ) is in T , then (q,⌧, p, q0, f ) is in T 0 and we define h(⌧) = wt(⌧).x . Obviously, B
is unambiguous and "-free.

Now let w 2 ⌃⇤ and ✓ = ⌧1 . . .⌧n 2 ⇥A(w) for some n 2 N, ⌧1, . . .⌧n 2 T . By definition of
h, we have that h(✓ ) = val(wt(⌧1) . . . wt(⌧n)).w. Hence wt(✓ ) = h(✓ )(w). Also, by definition
of (S,⌃, K)-automata, the set ⇥A(w) is finite if K is not complete. Thus the family (h(✓ ) |
✓ 2 L(B)) is locally finite if K is not complete. Then, for every w 2 ⌃⇤, we have

||A||(w) =
P
✓2⇥A(w)wt(✓ ) =

P
✓2⇥A(w) h(✓ )(w)

(⇤)
=
P
✓2L(B) h(✓ )(w) =

�P
✓2L(B) h(✓ )
�
(w) = h(L(B))(w),

where (⇤) holds because for every ✓ 2 L(B) with ✓ /2 ⇥A(w), we have h(✓ )(w) = 0 and due
to the fact that

P
✓2L(B), ✓ /2⇥A(w) 0= 0. Thus ||A||= h(L(B)). Ñ
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Example 5.6. Recall the unital valuation monoid K�disc = (R̃, max, val�disc,�1, 0) from Exam-
ple 2.5 for � = 0.5 and let A = ({q, f },⌃, ($, c), q, { f }, T, wt) be the (P1,⌃,K�disc)-automaton
from Example 3.31 with ⌃= {a, b}. The application of the construction yields the (P1, T)-
automaton B = ({q, f }, T, ($, c), q, { f }, TB) with the set TB of transitions

(q,⌧1, bottom, q, push(B, fid)),

(q,⌧2, top= A, q, pop),

(q,⌧3, top= B, q, push(B, fid)),

(q,⌧4, bottom, q, push(A, fid)),

(q,⌧5, top= B, q, pop),

(q,⌧6, top= A, q, push(A, fid)),

(q,⌧7, bottom, f , stay($)),

and the alphabetic morphism h: T ! K�disc[⌃[ {"}] such that

h(⌧1) = 2.a

h(⌧2) = 2.a

h(⌧3) = 2.a

h(⌧4) = 1.b

h(⌧5) = 1.b

h(⌧6) = 1.b

h(⌧7) = 0." .

Again, we consider the computation ✓ = ⌧1⌧3⌧5⌧5⌧4⌧2⌧7 of A on the word w = aabbba
(see Example 3.31). It is easy to see that ✓ can be recognized by B and, moreover,

h(⌧1⌧3⌧5⌧5⌧4⌧2⌧7) = val�disc(2211120) . w

= (2�0 + 2�1 + 1�2 + 1�3 + 1�4 + 2�5 + 0�6) . w

= 3.5 . w .

Hence, ||A||(w) = wt(✓ ) = h(✓ )(w) as A is unambiguous. É

In the next lemma we will prove the converse of Lemma 5.5 also for unambiguous (S,�)-
automata which are not "-free. We have to change the construction of the corresponding
[DV13, Lemma 4].

Lemma 5.7. For every alphabet �, unambiguous (S,�)-automaton B, and alphabetic mor-
phism h :�! K[⌃[ {"}] the weighted language h(L(B)) is (S,⌃, K)-recognizable.

Proof. Let B = (Q,�, c0, q0,Q f , T ) be an unambiguous (S,�)-automaton and let h: �!
K[⌃ [ {"}] be an alphabetic morphism. Moreover, recall our assumption that the family
(h(v) | v 2 L(B)) is locally finite if K is not complete. We will construct an (S,⌃, K)-automaton
A such that ||A||= h(L(B)).

The following construction employs a similar technique of coding the preimage of h into
the set of states as in [DV13, Lemma 4] in order to handle non-injectivity of h appropriately.
However, we have to modify the construction slightly, because of the following reason. In
each derivation of the automaton constructed by [DV13], the target state of a transition is
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enriched by the preimage of the symbol that is read by the subsequent transition. Hence,
in the beginning of each derivation an "-transition is required which guesses a preimage
of the first input symbol; the pushdown remains unchanged. As arbitrary storage types in
general do not have an identity instruction, we cannot use this construction. However, we
change it as follows: In each transition of our constructed automaton the target state encodes
a preimage of the symbol which is read by this transition; therefore we do not need an
additional transition.

We construct the (S,⌃, K)-automaton A = (Q0,⌃, c0, q00,Q0f , T 0,wt) where Q0 = {q00}[ (�[
{"})⇥Q with some element q00 with q00 /2 (�[ {"})⇥Q, Q0f = (�[ {"})⇥Q f , and T 0 and wt
are defined as follows.

• Let (q0, x , p, q, f ) be in T and x 2�[ {"}.
– If x 2� and h(x) = a.y, then the rule (q00, y, p, (x , q), f ) is in T 0, and its weight

is a.

– If x = ", then the rule (q00,", p, (", q), f ) is in T 0, and its weight is 1.

• Let (q, x , p, q0, f ) be in T and x 2�[ {"}. Moreover, let x 0 2�[ {"} be arbitrary.

– If x 2 � and h(x) = a.y, then the rule ((x 0, q), y, p, (x , q0), f ) is in T 0, and its
weight is a.

– If x = ", then the rule ((x 0, q),", p, (", q0), f ) is in T 0, and its weight is 1.

Let w 2 ⌃⇤. First, let v 2 �⇤ with h(v) = z.w for some z 2 K. We write v = �1 . . .�n 2
�⇤ with n � 0 and �i 2 �, i 2 [n]. Let h(�i) = ai .yi for every 1  i  n. Thus h(v) =
val(a1 . . . an).y1 . . . yn and w= y1 . . . yn.

For m � n let ✓ = ⌧1 . . .⌧m be a q0-computation in ⇥B(v) with ⌧1, . . . ,⌧m 2 T . For 1 
i  m, let xi be the second component of ⌧i, so xi 2 �[ {"}, and v = x1 . . . xm. Then we
construct the q00-computation ✓ 0 = ⌧01 . . .⌧0m in ⇥A(y1 . . . yn) with ⌧01, . . . ,⌧0m 2 T 0 as follows:

• If ⌧1 = (q0, x1, p1, q1, f1), then we let ⌧01 = (q
0
0, y 0, p1, (x1, q1), f1), where y 0 = y if

x1 2� and h(x1) = a.y , and y 0 = " if x1 = ".

• If 1< i  m and⌧i = (qi�1, xi , pi , qi , fi), then we let⌧0i = ((xi�1, qi�1), y 0, pi , (xi , qi), fi),
where y 0 = y if xi 2� and h(xi) = a.y , and y 0 = " if xi = ".

Note that if xi 2 � and h(xi) = a.y, then wt(⌧0i) = a, and if xi = ", then wt(⌧0i) = 1 for
each 1 i  m by definition of wt. Consequently

h(v)(w) = val(a1 . . . an) = val(wt(⌧01) . . . wt(⌧0m)) = wt(✓ 0).

Conversely, for every q00-computation ✓ 0 = ⌧01 . . .⌧0m in ⇥A(w) by definition of T 0 there are
a uniquely determined v 2�⇤ and a uniquely determined q0-computation ✓ = ⌧1 . . .⌧m in
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⇥B(v) such that ✓ 0 is the computation constructed above. Hence, for every v 2�⇤ and w 2 ⌃⇤,
if h(v) = z.w for some z 2 K , then ⇥B(v) and ⇥A(w) are in a one-to-one correspondence.

So, for every w 2 ⌃⇤ we obtain

h(L(B))(w) =
P

v2L(B) h(v)(w) =
P

v2L(B):
h(v)(w) 6=0

h(v)(w) .

Since B is unambiguous we can continue with

P
v2L(B):

h(v)(w) 6=0
h(v)(w) =
P

v2L(B),✓2⇥B(v):
h(v)(w) 6=0

wt(✓ 0) .

Since there is a one-to-one correspondence between ⇥B(v) and ⇥A(w) we can continue with

P
v2L(B),✓2⇥B(v):

h(v)(w) 6=0
wt(✓ 0) =
P
✓ 02⇥A(w)wt(✓ 0) = ||A||(w).

Thus h(L(B)) = ||A||. Ñ

Example 5.8. Recall the (P1, T )-automaton B = ({q, f }, T, ($, c), q, { f }, TB) as well as the
alphabetic morphism h: T ! K�disc[⌃[ {"}] from Example 5.6 with � = 0.5. We construct
the (P1,⌃,K�disc)-automaton A = (Q,⌃, ($, c), {q00},Q f , T 0, wt), where Q = {q00}[ (T [ {"})⇥
{q, f } and Q f = (T [ {"})⇥ { f }. Furthermore, we show by the transition

(q,⌧1, bottom, q, push(B, fid)) 2 TB

how the transitions in T 0 are constructed. Note that h(⌧1) = 2.a. Since q is the initial state
of B, we have that the transition

⌧= (q00, a, bottom, (⌧1, q), push(B, fid)) 2 T 0

and wt(⌧) = 2. Additionally, the transitions

((⌧1, q), a, bottom, (⌧1, q), push(B, fid)),

((⌧2, q), a, bottom, (⌧1, q), push(B, fid)),

((⌧3, q), a, bottom, (⌧1, q), push(B, fid)),

((⌧4, q), a, bottom, (⌧1, q), push(B, fid)),

((⌧5, q), a, bottom, (⌧1, q), push(B, fid)),

((⌧6, q), a, bottom, (⌧1, q), push(B, fid)),

((⌧7, q), a, bottom, (⌧1, q), push(B, fid)),

((", q), a, bottom, (⌧1, q), push(B, fid)),

are in T 0, each with weight 2. The same procedure constructs the other transitions of T 0 from
the remaining transitions of TB. É
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6 Separating the storage from an
(S,�)-automaton

In this chapter we will characterize the language recognized by an "-free (S,�)-automaton B
as the image of the set of behaviours of the initial configuration of B under a simple transducer
mapping. Our proof follows closely the technique in the proof of [EV86, Theorem 3.26].

Before we get to our main theorem, we first want to introduce, respectively repeat, some
concepts needed for this.

6.1 ⌦-behaviour and a-transducers

Let c0 be the initial configuration of B and ✓ a computation of B, i.e., ✓ 2 ⇥B(q0, w, c0) for
some w 2�⇤. By dropping from ✓ all references to states and to the input, a sequence of
pairs remains where each pair consists of a predicate and an instruction. Such a sequence is
called a behaviour of c0.

Definition 6.1. Let S = (C , P, F, C0) be a storage type and let ⌦ be a finite subset of P ⇥ F .
Moreover, let c 2 C and v = (p1, f1) . . . (pn, fn) 2 ⌦⇤ for some n 2 N. We say that v is an
⌦-behaviour of c if for every i with i 2 [n] we have

(i) pi(c0) = true and

(ii) fi(c0) is defined,

where c0 = fi�1(. . . f1(c) . . .). Note that c0 = c for i = 1. We denote the set of all ⌦-behaviours
of c by B(⌦, c). É

We note that each behaviour of c is a path in the approximation of c as defined in [EV86,
Definition 3.23].

Example 6.2. Recall the (P1, T )-automaton B = ({q, f }, T, ($, c), q, { f }, TB) from Example 5.6.
Let ⌦ be the set containing all tuples (p, f ) 2 P ⇥ F such that for some q1, q2 2 {q, f }, x 2 T
there is a transition (q1, x , p, q2, f ) 2 TB. As an example, we have (bottom,push(B, fid)) 2 ⌦
since the transition (q,⌧1, bottom, q, push(B, fid)) is in TB.
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Now consider the computation

✓ = (q,⌧1, bottom, q, push(B, fid))(q,⌧5, top= B, q, pop)(q,⌧7, bottom, f , stay($))

from B. By dropping from ✓ all references to states and to the input, we obtain the sequence

! = (bottom, push(B, fid))(top= B, pop)(bottom, stay($)).

Since bottom(($, c)) = true, push(B, fid)(($, c)) is defined, (top= B)((B, c)($, c)) = true and
so on, we have that ! 2 B(⌦, ($, c)) . É

Now we briefly recall the concept of a-transducers from [GG70].

Definition 6.3. An a-transducer (from ⌦ to �) is a machine M = (Q,⌦,�,�, q0,Q f ), where
Q, ⌦, and � are alphabets (of states, input symbols, and output symbols, respectively), q0 2Q
(initial state), Q f ✓Q (final states), and � is a finite subset of Q⇥⌦⇤ ⇥Q⇥�⇤ (transitions).
We say that M is a simple transducer if � ✓Q⇥⌦⇥Q⇥�. É

For the rest of this section, let M= (Q,⌦,�,�, q0,Q f ) be an a-transducer.

For some transition (q, x , q0, y) 2 � we call q its source state, x its input word (respectively
input symbol if M is a simple transducer), q0 the target state, and y the output word
(respectively output symbol if M is a simple transducer).

Definition 6.4. The computation relation ofM is the binary relation `M on the set Q⇥⌦⇤ ⇥�⇤
defined as follows: let (q, ww0, v) `M (q0, w0, vv0) for every (q, w, q0, v0) 2 �, w0 2 ⌦⇤, and
v 2�⇤. É

Definition 6.5. The mapping induced by M, also denoted by M, is the mapping M: ⌦⇤ !
P(�⇤) defined by

M(w) = {v 2�⇤ | (q0, w,") `⇤M (q,", v), q 2Q f }.

If M is a simple transducer, then M(w) is finite for every w. For every L ✓ ⌦⇤ we define
M(L) =
S

v2L M(v). É

6.2 Separating the storage

Our aim of this section is to prove the following theorem.

Theorem 6.6. Let S = (C , P, F, C0) be a storage type. Moreover, let L ✓�⇤. Then the following
are equivalent:

(1) L is recognizable by some "-free (S,�)-automaton.
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(2) There are c 2 C , a finite set ⌦ ✓ P ⇥ F , and a simple transducer M from ⌦ to � such
that L =M(B(⌦, c)).

We note that (1))(2) of Theorem 6.6 is similar to [GG70, Lemma 2.3] (after decomposing
the simple transducer M according to Theorem 7.1).

For the proof of this theorem, we define the concept of relatedness between an "-free
(S,�)-automaton B and a simple transducer M with the following intention: B allows a
computation

(q0, x1, p1, q1, f1)(q1, x2, p2, q2, f2) . . . (qn�1, xn, pn, qn, fn)

for some states q1, . . . , qn�1 if and only if

(q0, (p1, f1) . . . (pn, fn),") `⇤M (qn,", x1 . . . xn)

and (p1, f1) . . . (pn, fn) 2 B(⌦, c0).
That is, while reading a behaviour of the initial configuration of B, the simple transducer

M produces a string which is recognized by B.

Definition 6.7. Let B = (Q,�, c, q0,Q f , T ) be an "-free (S,�)-automaton and let M =
(Q0,⌦,�0,�, q00,Q0f ) be a simple transducer. Then B is related to M if

• Q =Q0, q0 = q00, Q f =Q0f ,

• � =�0 and ⌦ is the set of all pairs (p, f ) such that T contains a transition of the form
(q, x , p, q0, f ) for some q, q0 2Q, and x 2�, and

• for every q, q0 2Q, x 2�, p 2 P, and f 2 F we have: (q, x , p, q0, f ) 2 T if and only if
(q, (p, f ), q0, x) 2 �. É

Example 6.8. Recall the (P1, T )-automaton B = ({q, f }, T, ($, c), q, { f }, TB) from Example 5.6.
Clearly, B is "-free. In the further we denote the initial configuration ($, c) of B by c. The simple
transducer M, such that B is related to M, is the transducer M = ({q, f },⌦, T,�, q, { f }),
where

⌦ = {(bottom,push(B, fid)), (bottom, push(A, fid)), (bottom, stay($)),

(top= B, push(B, fid)), (top= B, pop), (top= A, push(A, fid)),

(top= A, pop)},

and � consists of the transitions

(q, (bottom,push(B, fid)), q,⌧1), (q, (bottom, push(A, fid)), q,⌧4),

(q, (top= A, pop), q,⌧2), (q, (top= B, pop), q,⌧5),

(q, (top= B, push(B, fid)), q,⌧3), (q, (top= A, push(A, fid)), q,⌧6),

(q, (bottom, stay($)), f ,⌧7).
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Now consider the computation

(q,⌧1, bottom, q, push(B, fid))(q,⌧5, top= B, q, pop)(q,⌧7, bottom, f , stay($))

of B, recognizing the word w= ⌧1⌧5⌧7 2 L(B). The corresponding computation of M is

(q, (bottompush(B, fid)), q,⌧1)(q, (top= B, pop), q,⌧5)(q, (bottom, stay($)), f ,⌧7),

which translates the string (bottom, push(B, fid))(top = B, pop)(bottom, stay($)) 2 B(⌦, c)
into w. Thus, w is also in M(B(⌦, c)). É

Now we can state the following lemma.

Lemma 6.9. Let B be an "-free (S,�)-automaton with initial configuration c and let M be a
simple transducer from ⌦ to �. If B is related to M, then L(B) =M(B(⌦, c)).

Proof. Let B = (Q,�, c, q0,Q f , T ) and M= (Q,⌦,�,�, q0,Q f ).
First we prove that L(B) ✓M(B(⌦, c)). Let v 2 L(B). Then v = x1...xn for some n � 0

and xi 2 � for every 1  i  n. Moreover, there is a q0-computation ✓ in ⇥B(v) with
✓ = ⌧1...⌧n such that ⌧i 2 T , where ⌧1 = (q0, x1, p1, q1, f1), for every 2  i  n we have
⌧i = (qi�1, xi , pi , qi , fi), and qn 2Q f .

Since B is related to M, we have (qi�1, (pi , fi), qi , xi) 2 � for every 1  i  n. Hence
(q0, w,") `⇤M (qn,", x1 . . . xn) with w = (p1, f1) . . . (pn, fn). Since w 2 B(⌦, c) is a behaviour of
c, v = x1 . . . xn, and qn 2Q f , we obtain that v 2M(B(⌦, c)).

Next we prove that M(B(⌦, c)) ✓ L(B). Let v 2M(B(⌦, c)) with v = x1...xn for some
n � 0 and xi 2 � for every 1  i  n. Then there is a behaviour w 2 B(⌦, c) of c such
that v 2M(w). Then there are (pi , fi) 2 ⌦ with 1  i  n such that w= (p1, f1) . . . (pn, fn).
Moreover, there are q0, . . . , qn 2Q such that (q0, (p1, f1), q1, x1) 2 �, for every 2 i  n we
have (qi�1, (pi , fi), qi , xi) 2 �, and qn 2Q f .

Since B is related to M, we have ⌧i = (qi�1, xi , pi , qi , fi) 2 T for 1  i  n. Since w 2
B(⌦, c), q0 is the initial state of B, and qn 2 Q f , we have that ⌧1 . . .⌧n 2 ⇥B(v) and thus
v 2 L(B). Ñ

By means of Lemma 6.9 we can now prove our main theorem of this chapter.

Proof of Theorem 6.6. (1)) (2): Let L be a language recognizable by some "-free (S,�)-
automaton B = (Q,�, c, q0,Q f , T ). Let ⌦ be the set of all pairs (p, f ) such that T contains
a transition of the form (q, x , p, q0, f ) for some q,q0 2 Q, and x 2 �. We construct the
simple transducer M = (Q,⌦,�,�, q0,Q f ) by defining (q, (p, f ), q0, x) 2 � if and only if
(q, x , p, q0, f ) 2 T for every q, q0 2 Q, x 2�, and (p, f ) 2 ⌦. Clearly, B is related to M and
thus, by Lemma 6.9, we have that L(B) =M(B(⌦, c)).
(2)) (1): Let c 2 C , ⌦ a finite subset of P ⇥ F , and M = (Q,⌦,�,�, q0,Q f ) a simple

transducer. First we reduce M to the simple transducer M0 = (Q,⌦0,�,�, q0,Q f ) where
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⌦0 is the set of all pairs (p, f ) such that (q, (p, f ), q0, x) 2 � for some q, q0 2 Q and x 2 �.
Obviously, � ✓Q⇥⌦0 ⇥Q⇥� and M(B(⌦, c)) =M0(B(⌦0, c)).

Next we construct the "-free (S,�)-automaton B = (Q,�, c, q0,Q f , T ) by defining T =
{(q, x , p, q0, f ) | (q, (p, f ), q0, x) 2 �}. Since B is related to M0, by Lemma 6.9 we have that
L(B) =M0(B(⌦0, c)) =M(B(⌦, c)). Ñ
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7 Chomsky-Schützenberger characterization
of weighted automata with storage

In this chapter we want to give the proof of our Chomsky-Schützenberger theorem for
weighted automata with storage. We obtain this theorem by separating the weights and
separating the storage according to Theorem 5.4 and Theorem 6.6, respectively, from an
(S,⌃, K)-automaton. Then the resulting simple transducer can be decomposed further. There-
fore, we first recall a decomposition result for simple transducers [GG69, proof of Theorem
2.1].

Theorem 7.1. Let ⌦ be an alphabet, let L ✓ ⌦⇤, and let M: ⌦⇤ ! Pfin(�⇤) be induced by a
simple transducer M. Then there are an alphabet �, two letter-to-letter morphisms h1 : �!
B[⌦] and h2 : �! B[�], and a regular language R ✓ �⇤ such that M(L) = h2(h�1

1 (L)\ R).

To illustrate our result afterwards by way of example, let us briefly recall the construction
in the proof of [GG69, Theorem 2.1] at this point.
Let L ✓ ⌦⇤ and let M = (Q,⌦,�,�, q0,Q f ) be a simple transducer. We construct the alphabet
� ✓Q⇥⌦⇥Q⇥� such that (q, a, q0, b) 2 � if and only if (q, a, q0, b) 2 �. Then we define two
letter-to-letter morphisms h1 : �! B[⌦] and h2 : �! B[�] such that for all (q, a, q0, b) 2 �

h1(q, a, q0, b) = 1.a and h2(q, a, q0, b) = 1.b .

Furthermore, let R ✓ �⇤ be the set1

{(p0, a1, p1, b1)(p1, a2, p2, b2) . . . (pn�1, an, pn, bn) 2 �⇤ | n� 0, p0 = q0, pn 2Q f }.

Obviously, R is regular and M(L) = h2(h�1
1 (L)\ R).

Example 7.2. Let M = ({q, f },⌦, T,�, q, { f }) be the simple transducer from Example 6.8.
Then let � = � and define h1 : �! B[⌦], h2 : �! B[T], and R as in the construction above.
We want to give a few examples to illustrate the resulting formalisms. For this consider the
transition (q, (bottom,push(B, fid)), q,⌧1) 2 �. This transition is mapped by h1 to its input
symbol,

h1(q, (bottom,push(B, fid)), q,⌧1) = 1.(bottom,push(B, fid)),
1 Note that, in contrast to [GG69], we also allow " as an element of R for the case that the initial state of the

simple transducer is also a final state.
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and by h2 to its output symbol,

h2(q, (bottom,push(B, fid)), q,⌧1) = 1.⌧1 .

Moreover, we have that (q, (bottom,push(B, fid)), q,⌧1) /2 R since q /2Q f . For an element
of R consider the word

✓ = (q, (bottom, push(B, fid)), q,⌧1)(q, (top= B, pop), q,⌧5)(q, (bottom, stay(#)), f ,⌧7),

where the source state of the first symbol is the initial state of M, the target state of the last
symbol is a final state of M , and the target state of each symbol equals the source state of its
subsequent symbol. É

Next we show that a letter-to-letter morphism h2 : �! B[�] and an alphabetic morphism
h: �! K[⌃[ {"}] can be combined smoothly. For this recall that for every x 2 � we have
| supp(h2(x))|= 1.

Definition 7.3. Let h2 : �! B[�] be a letter-to-letter morphism and let h: �! K[⌃[ {"}]
be an alphabetic morphism. Then we define the alphabetic morphism (h � h2): � !
K[⌃[ {"}] for every x 2 � by

(h � h2)(x) = h(�) if h2(x) = 1.�

for some � 2� . É

Example 7.4. Recall the alphabetic morphism h: T ! K�disc[⌃[ {"}] from Example 5.6 for
� = 0.5 as well as the letter-to-letter morphism h2 : �! B[T] from Example 7.2. Moreover,
consider the symbol (q, (bottom, push(B, fid)),⌧1, q) 2 �. Since

h2(q, (bottom, push(B, fid)), q,⌧1) = 1.⌧1 and h(⌧1) = 2.a,

we have that
(h � h2)(q, (bottom, push(B, fid)),⌧1, q) = 2.a .

Moreover, for a more complex example consider the string

✓ = (q, (bottom, push(B, fid)), q,⌧1)(q, (top= B, pop), q,⌧5)(q, (bottom, stay(#)), f ,⌧7)

from Example 7.2. With the same argumentation we have that

(h � h2)(✓ ) = val(210).ab" = 2.5.ab . É

Lemma 7.5. Let h2 : �! B[�] be a letter-to-letter morphism and let h: �! K[⌃[ {"}] be
an alphabetic morphism. Moreover, let H ✓ �⇤ be a language. If (h(v) | v 2 h2(H)) is locally
finite, then ((h � h2)(w) | w 2 H) is locally finite.
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r 2 Khh⌃⇤ii

�⇤ ◆ L(B)

h

B(⌦, c) ✓ ⌦⇤ M

\ R ✓ �⇤

h�1
1 h2 h0

Figure 7.1: An illustration of the proof of Theorem 7.6.

Proof. Let u 2 ⌃⇤. By assumption, we have that {v 2 h2(H) | u 2 supp(h(v))} is finite; let us
denote this set by Cu. Since h2 is letter-to-letter, we have that {y 2 H | v 2 h2(y)} is finite for
each v 2 h2(H). Then we have:

|{w 2 H | u 2 supp((h � h2)(w)}|=
X

v2Cu

|{y 2 H | v 2 h2(y)}|.

Hence, {w 2 H | u 2 supp((h � h2)(w)} is finite. Ñ

Now we can prove the CS theorem for (S,⌃, K)-automata. In Figure 7.1 we illustrate the
proof of this theorem.

Theorem 7.6. Let S = (C , P, F, C0) be a storage type, ⌃ an alphabet, and K a unital valuation
monoid. If r 2 Khh⌃⇤ii is (S,⌃, K)-recognizable, then there are

• an alphabet � and a regular language R ✓ �⇤,

• a finite set ⌦ ✓ P ⇥ F and a configuration c 2 C ,

• a letter-to-letter morphism h1 : �! B[⌦], and

• an alphabetic morphism h0 : �! K[⌃[ {"}]

such that r = h0(h�1
1 (B(⌦, c))\ R).

Proof. By Theorem 5.4 there are an alphabet �, an "-free (S,�)-automaton B, and an
alphabetic morphism h: �! K[⌃[ {"}] such that r = h(L(B)). Since B is "-free, ⇥B(w) is
finite for every w 2�⇤, and if K is not complete then (h(v) | v 2 L(B)) is locally finite.

According to Theorem 6.6, there are c 2 C , a finite set ⌦ ✓ P ⇥ F , and a simple transducer
M from ⌦ to � such that L(B) =M(B(⌦, c)).

Due to Theorem 7.1, there are an alphabet �, two letter-to-letter morphisms h1 : �!
B[⌦] and h2 : � ! B[�], as well as a regular language R ✓ �⇤ such that M(B(⌦, c)) =
h2(h�1

1 (B(⌦, c))\ R). Let us denote the language h�1
1 (B(⌦, c))\ R by H. Thus L(B) = h2(H).
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7 Chomsky-Schützenberger characterization of weighted automata with storage

Since (h(v) | v 2 L(B)) is locally finite if K is not complete, we have by Lemma 7.5 that also
((h � h2)(w) | w 2 H) is locally finite if K is not complete. Thus r = (h � h2)(h�1

1 (B(⌦, c))\ R)
and we can take h0 = (h � h2). Ñ

Now, by the combination of previous examples, we can illustrate the decomposition of
Theorem 7.6.

Example 7.7. The aim of this example is to illustrate the decomposition of a computation
of an (S,⌃, K)-automaton into the components according to Theorem 7.6. For this recall
the unital valuation monoid K�disc = (R̃, max, val�disc,�1, 0) from Example 2.5 for � = 0.5
and let A = ({q, f },⌃, ($, c), q, { f }, T,wt) be the (P1,⌃,K�disc)-automaton from Example 3.31
with ⌃ = {a, b}. Furthermore, recall

- the alphabet � and the regular language R ✓ �⇤ from Example 7.2,

- the alphabet ⌦ and the configuration c = ($, c) from Example 6.8,

- the letter-to-letter morphism h1 : �! B[⌦] from Example 7.2, and

- the alphabetic morphism (h � h2): �! K[⌃[ {"}] from Example 7.4 that we denote
in the following by h0.

Now we want to illustrate how the word ab 2 ⌃⇤ is treated. Consider the string

! = (bottom, push(B, fid))(top= B, pop)(bottom, stay($)) 2 ⌦⇤.

As argued in Example 6.2 we have that ! 2 B(⌦, c). The corresponding string under the
inverse of h1 is

✓ = (q, (bottom, push(B, fid)), q,⌧1)(q, (top= B, pop), q,⌧5)(q, (bottom, stay(#)), f ,⌧7),

which is also in R as explained in Example 7.2. It was illustrated in Example 7.4 that

h0(✓ ) = 2.5.ab

and, therefore, 2.5.ab 2 h0(h�1
1 (B(⌦, c))\ R). On the other hand, we have that

✓ 0 = (q, a, bottom, q, push(B, fid))(q, b, top= B, q, pop)(q,", bottom, f , stay($))

is in⇥A(ab) and wt(✓ 0) = 2.5.ab. Since A is unambiguous, we therefore also have ||A||(ab) =
2.5. É
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7.1 Instantiations of the Chomsky-Schützenberger theorem

7.1 Instantiations of the Chomsky-Schützenberger theorem

Finally we instantiate the storage type S and the unital valuation monoid K in Theorem 7.6 in
several ways and obtain the CS theorem for the corresponding class of (S,⌃, K)-recognizable
languages.

(1) Let S = P1 and let K = B. The we obtain an alternative CS theorem for context-free
languages. In fact, we conjecture that the original CS theorem as formulated in [Har78]
follows from this instantiation of our result, compare to Chapter 8. However, we will
postpone the formal investigation of this conjecture until further work.

(2) Let S = P1 and let K be an arbitrary unital valuation monoid. The we obtain an
alternative CS theorem for quantitative context-free languages [DV13]. We will compare
these two theorems in Chapter 8.

(3) Let S = Pn and let K = B. The we obtain a CS theorem for n-iterated pushdown
languages.

(4) Let S = Pn and let K be an arbitrary unital valuation monoid. The we obtain a CS
theorem for the K-weighted n-iterated pushdown languages from Definition 3.33.

(5) S = MON(M) for some monoid M and let K = B. We obtain a CS theorem for M -
automata [Kam07].
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8 Comparison of two
Chomsky-Schützenberger theorems

Now that we have developed a CS theorem for weighted automata with storage and showed
that (P1,⌃, K)-automata are expressively equivalent to the weighted pushdown automata
(WPDA) of [DV13], in this chapter we want to continue with a comparison of Chomsky-
Schützenberger characterizations for these two formalisms.

Also in [DV13], a CS theorem for languages recognizable by WPDAs was proved. In the
following, we want to compare this result with our CS result, instantiated for (P1,⌃, K)-
recognizable languages.

In contrast to the previous work, this chapter is intended to provide an informal overview.
Instead of formal proofs we will use examples and illustrations to demonstrate similarities
and differences between the two CS results.

First, we want to recall a few notions and definitions that we will need in the course of
this chapter.

In the further we refer to the class of languages recognized by WPDAs as the class of
weighted context-free languages. A second formalism which generates exactly this class of
languages and is used in [DV13] are weighted context-free grammars (over unital valuation
monoids).

Definition 8.1. A context-free grammar (CFG) is a tuple G = (N ,⌃, Z , P) where N is a finite
set (nonterminals), ⌃ is an alphabet (terminals), Z 2 N (initial nonterminal), and P is a finite
set with elements of the form A! ⇠, with A2 N and ⇠ 2 (N [⌃)⇤ (productions). É

The leftmost derivation relation) of a CFG G is defined in the usual way, and we write
)p if the production p 2 P is used in the derivation step. Furthermore, a derivation of G is a
sequence d = p1 . . . pn, n� 0, of productions of P such that there are ⇠0, . . . ,⇠n 2 (N [⌃)⇤
with ⇠0)p1 ⇠1)p2 . . .)pn ⇠n in a leftmost manner. The set of all derivations starting with
the initial nonterminal Z and resulting in a word w 2 ⌃⇤ is denoted by D(w). We say that G
is unambiguous if |D(w)| 1 for each w 2 ⌃⇤. Then we can define the language generated
by G as follows:
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8 Comparison of two Chomsky-Schützenberger theorems

Definition 8.2. Let G be a CFG. The language generated by G is the set

L(G) = {w 2 ⌃⇤ | D(w) 6= ;}. É

We refer to the class of languages generated by context-free grammars as the class of
context-free languages.

A context-free grammar can be extended to a weighted context-free grammar by assigning
a weight, taken from a unital valuation monoid K , to each production of P.

Definition 8.3. Let K be a unital valuation monoid. A K-weighted context-free grammar
(K-WCFG) is a tuple G = (N ,⌃, Z , P,wt) where (N ,⌃, Z , P) is a CFG and wt: P ! K is a
mapping (weight assignment). Moreover, it must be the case that D(w) is finite for every
w 2 ⌃⇤ or that K is complete. É

Each derivation d = p1 . . . pn, n � 0, is assigned a weight wt(d) = val(wt(p1) . . . wt(pn))
from K . Then the grammar G associates to every word w 2 ⌃⇤ the sum of the weights of all
derivations of w:

Definition 8.4. Let K be a unital valuation monoid and let G = (N ,⌃, Z , P,wt) be a K-WCFG.
The weighted language of G is the K-weighted language ||G||: ⌃⇤ ! K defined for every w 2 ⌃⇤
by

||G||(w) =
X

d2D(w)

wt(d). É

It was shown in [DV13, Theorem 1] that, for every alphabet ⌃ and unital valuation monoid
K , the weighted languages generated by K-WCFGs over ⌃ are exactly the weighted languages
recognized by WPDAs over ⌃ and K . Furthermore, we stated in Theorem 4.9 that the latter
languages in turn are the same as the weighted languages recognized by (P1,⌃, K)-automata.
To show the similarity between K-WCFGs over ⌃ and our formalism of (P1,⌃, K)-automata
we consider the following example.

Example 8.5. Recall the unital valuation monoid K�disc = (R̃, max, val�disc,�1, 0) from Exam-
ple 2.5 for � = 0.5 and let A = ({q, f },⌃, ($, c), q, { f }, T, wt) be the (P1,⌃,K�disc)-automaton
from Example 3.31 with ⌃ = {a, b}. We construct a K�disc-WCFG G such that ||G||= ||A||. For
this let G = ({S, A, B},⌃, S, P, wtG), where P contains the productions

p1 = (S! aSB)

p2 = (S! aB)

p3 = (A! a)

p4 = (S! bSA)

p5 = (S! bA)

p6 = (B! b)

p7 = (S! SS)
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⌧1 ⌧3 ⌧5

⌧5 ⌧4 ⌧2 ⌧7

S )p7 SS )p1 aSBS )p2 aaBBS )p6 aabBS

)p6 aabbS )p5 aabbbA )p3 aabbba

Figure 8.1: The derivation of the word w = aabbba by G in comparison with the behaviour of the
pushdown of A, while recognizing w with the computation ⌧1⌧3⌧5⌧5⌧4⌧2⌧7 from Example 3.31.

and

wtG(p) =

8
><
>:

2 if p 2 {p1, p2, p3}
1 if p 2 {p4, p5, p6}
0 if p = p7

.

The idea how to generate words with the same number of as and bs is very similar to the
computation concept of A. To see this, consider as an example the production/transition

p1 = (S! aSB), ⌧1 = (q, a, bottom, q, push(B, fid))

from P and T , respectively. In p1, starting from the nonterminal S, the terminal a is generated
and then S is called again. Additionally, the nonterminal B ensures that also another b will
be derived. In ⌧1, this necessary b is counted by the symbol B on the pushdown.

The elimination of B is then realized by the production/transition

p6 = (B! b), ⌧5 = (q, b, top= B, q, pop)

from P and T , respectively.
The main difference between G and A lies in the fact that G keeps track of the symbols

to be generated with nonterminals while A realizes this counting by its pushdown. By this
reason, G has not to implement the “switching mechanism” of the pushdown from B to A if a
symbol difference is negative (compare with Example 3.31). This phenomenon is captured
by the production S! SS as follows. If a word w 2 L(G) can be split into words w1, . . . , wn,
n� 2, such that w= w1 . . . wn and wi 2 L(G) for every i 2 [n], each of this partial words is
generated by a separate nonterminal S.

To understand the derivation p7p1p2p6p6p5p3 of the word w = aabbba by G in comparison
with the behaviour of the pushdown of A, during the recognition of w with the computation
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8 Comparison of two Chomsky-Schützenberger theorems

⌧1 . . .⌧7 from Example 3.31, see Figure 8.1. It is clearly visible that G and A are counting
the same number of As and Bs.

Since each production which generates an a is of weight 2, each production which generates
a b is of weight 1, and S! SS is of weight 0, it is easy to see that ||G||(w) = 3.5 and ||G|| = ||A||.

É

A particular context-free language consists of all well-bracketed words over some alphabet
Y and is also known as Dyck language.

Definition 8.6. Let Y be an alphabet and let Y = {y | y 2 Y }. The Dyck language over Y ,
denoted by DY , is the smallest set D such that

• " 2 D,

• for all v, w 2 D we have vw 2 D, and

• for all w 2 D and y 2 Y we have ywy 2 D.

We will often denote y 2 Y by (y and y 2 Y by )y . É

Now we want to recall the Chomsky-Schützenberger theorem for weighted context-free
languages of [DV13]. Note that we only consider the two essential parts of the original
theorem that we need for our comparison. Moreover, the version in [DV13] was formulated
as an equivalence instead of an implication. However, we only need one direction. Then, the
CS result of [DV13] can be formulated as follows:

Theorem 8.7. (cf. [DV13, Theorem 2]) Let K be a unital valuation monoid and r 2 Khh⌃⇤ii.
If there is a K-WCFG G such that ||G|| = r, then there are an alphabet Y , a recognizable
language H over Y [ Y , and an alphabetic morphism g 0 : Y [ Y ! K[⌃ [ {"}] such that
r = g 0(DY \ H).

In the following we will briefly describe the structure of this theorem and the idea of the
associated proof in comparison with the proof of our CS theorem, which are both illustrated
in Figure 8.2.

Given a weighted context-free grammar, in a first step it is decomposed into an alphabetic
morphism and an unweighted context-free grammar, similar to our Lemma 5.5. This part we
will investigate first. Therefore, recall the following lemma:

Lemma 8.8. ([DV13, Lemma 3]) Let K be a unital valuation monoid and r 2 Khh⌃⇤ii. If
there is a K-WCFG G such that ||G|| = r, then there are an alphabet �, an unambiguous CFG
G0 over �, and an alphabetic morphism g :�! K[⌃[ {"}] such that r = g(L(G0)).

For the rest of this section let G = (N ,⌃, Z , P,wt) be a K-WCFG over ⌃ and let
A= (Q,⌃, c0, q0,Q f , T,wt) be a (P1,⌃, K)-automaton.
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r 2 Khh⌃⇤ii

�⇤ ◆ L(B)

h

B(⌦, c) ✓ ⌦⇤ M

\ R ✓ �⇤

h�1
1 h2 h0

r 2 Khh⌃⇤ii

�⇤ ◆ L(G0)

g

DY

\ H ✓ (Y [ Y )⇤

g2 g 0

Figure 8.2: A comparison of the proofs of Theorem 7.6 (left) and Theorem 8.7 (right).

This lemma states that G can be decomposed into an alphabetic morphism g and an
unambiguous CFG G0 such that the weighted language of G equals g applied to the language
of G0. This part is very similar to Lemma 5.5, which is used in our proof of Theorem 7.6.
That means the construction of g and G0 coincides with our construction of an unweighted
(P1,�)-automaton B as well as the alphabetic morphism h: �! K[⌃[ {"}] based on the
(P1,⌃, K)-automaton A in the proof of Lemma 5.5 except of the fact that instead of an
unambiguous CFG G0 as the unweighted formalism, an unambiguous and "-free automaton
with pushdown storage is used in the latter. This relationship will be examined more closely
in Example 8.9.

Example 8.9. Recall the unital valuation monoid K�disc = (R̃, max, val�disc,�1, 0) from Ex-
ample 2.5 for � = 0.5 and let G = ({S, A, B},⌃, S, P,wtG) be the K�disc-WCFG from Example
8.5. The aim of this example is to illustrate the construction of an alphabetic morphism g
as well as an unambiguous CFG G0 as in Lemma 8.8 on the basis of G. Furthermore, the
relationship to the proof of Lemma 5.5 will be made clear.

For this it is required that the initial grammar is in head normal form, i.e., each production
is of the form A! xB1 . . . Bk, k 2 N, where A, B1, . . . , Bk are nonterminals and x is a terminal
or ". In [DV13] it was shown that each K-WCFG can be transformed accordingly. Clearly, the
example grammar G is in head normal form.

The idea behind the construction is the following: for each production p = A! xB1 . . . Bk 2
P the resulting CFG G0 has a production A! pB1 . . . Bk and we define g(p) = wtG(p).x .

The application of the construction on G yields the CFG G0 = ({S, A, B}, P, S, P 0) with the
set P 0 of productions

p01 = (S! p1SB),

p02 = (S! p2B),

p03 = (A! p3),

p04 = (S! p4SA),

p05 = (S! p5A),

p06 = (B! p6),

p07 = (S! p7SS),

and the alphabetic morphism g : P ! K�disc[⌃[ {"}] such that
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8 Comparison of two Chomsky-Schützenberger theorems

g(p1) = 2.a

g(p2) = 2.a

g(p3) = 2.a

g(p4) = 1.b

g(p5) = 1.b

g(p6) = 1.b

g(p7) = 0." .

In fact, except for syntactical differences of the formalisms used, the construction is the
same as the construction in the proof of Lemma 5.5, instantiated with the storage type P1.
For this, compare with Example 5.6.

By transforming the initial WCFG first into head normal form, it is quite close to an
automaton – in every production exactly one symbol or " is generated. In the next step then
this symbol or " in a production is replaced by the production itself. The same is performed
with the transition of the automaton A in Example 5.6, compare

p1 = S! aSB
p01 = S! p1SB

and
⌧1 = (q, a, bottom, q, push(B, fid))
⌧01 = (q,⌧1, bottom, q, push(B, fid))

.

These new symbols are mapped in both constructions by an alphabetic morphism to a
monome w.a, where a is the original symbol and w is the weight of the given production or
transition, compare

g(p1) = 2.a and h(⌧1) = 2.a ,

where h is the alphabetic morphism constructed in Example 5.6.
In Lemma 5.5 it is additionally required that the constructed automaton is "-free. Indeed,

also the grammar resulting from the construction presented above derives in each production
exactly one symbol.

Now consider the word ab 2 ⌃⇤. It is easy to see that this string is recognized by A with
the computation ✓ and generated by G with the derivation d, where

✓ = (q, a, bottom, q, push(B, fid))(q, b, top= B, q, pop)(q,", bottom, f , stay($)),

d = (S! aB)(B! b).

The computation corresponding to ✓ according to the proof of Lemma 5.5 of the automaton
B, that is constructed in Example 5.6 from the automaton A, is the computation

✓ 0 = (q,⌧1, bottom, q, push(B, fid))(q,⌧5, top= B, q, pop)(q,⌧7, bottom, f , stay($)),

recognizing the string ✓ = ⌧1⌧5⌧7 2 T ⇤ (recall that the transitions of ✓ are used as symbols
in the transitions of ✓ 0). In a similar way, the derivation of G0 corresponding to d is the
derivation

d 0 = (S! p2B)(B! p6),

generating d = p2p6 2 P⇤. Moreover, we have that

h(✓ 0) = 2.5.ab and g(d 0) = 2.5.ab .

É
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Now, where we have seen that the first part of the proofs of Theorem 7.6 and Theorem
8.7 are very similar, we want to compare the remaining parts. These include differences in
the overview of Figure 8.1 and, in fact, two different approaches were used. In the proof
of our CS theorem the unweighted (P1,�)-automaton B is decomposed into a storage part,
represented by a set B(⌦, c) of behaviours of P1 and a configuration c, and a simple transducer
M. This transducer can be decomposed further into two letter-to-letter morphisms h1 and h2

and a regular language R such that L(B) = h2(h�1
1 (B(⌦, c))\ R). The language R ranges over

the transitions of M as symbols.
In Theorem 8.7, however, another kind of decomposition is used. Since in the first part

of the proof, by Lemma 8.8, an unweighted CFG G over some alphabet � is obtained, the
original Chomsky-Schützenberger theorem can be applied to obtain a Dyck language DY over
some parenthesis alphabet Y , a regular language H ✓ (Y [ Ȳ )⇤ and an alphabetic morphism
g2 : Y [ Ȳ ! B[�[ {"}] such that L(G) = g2(DY \ H).1

Finally, in both the proof of Theorem 7.6 and the proof of Theorem 8.7, the alphabetic
morphisms h and h2 as well as g and g2 are composed, respectively.

Now if we look at the decomposition and the illustration in Figure 8.1, one could suspect,
that h�1

1 (B(⌦, c)) in the left diagram corresponds in some way to the Dyck language DY in the
right diagram. To show that this is not the case, we want to investigate the CS decomposition
of G by an example.

Example 8.10. The aim of this example is to illustrate the Chomsky-Schützenberger decom-
position of a context-free language over �, represented by a context-free grammar G0, into a
Dyck language over some parenthesis alphabet Y , a regular language H over Y [ Ȳ and an
alphabetic morphism g2 : Y [ Ȳ ! B[�[ {"}].

Note that we do not want to explain the construction formally. This is folklore and can be
looked up, for example, in [ABB97].

Recall the context-free grammar G0 = ({S, A, B}, P, S, P 0) from Example 8.9. As parentheses
we use the nonterminals and terminals of G0, i.e., we have

Y = { (x | x 2 {S, A, B}[ {p1, . . . , p7}}, and

Ȳ = { )x | x 2 {S, A, B}[ {p1, . . . , p7}}.

Furthermore, we define the alphabetic morphism g2 : (Y [ Ȳ )! B[P [ {"}] such that for
every a 2 Y [ Ȳ

g2(a) =

(
" if a = (x with x 2 {A, S, B} or a 2 Ȳ , and

x if a = (x with x 2 {p1 . . . p7} .

1 Note that in [DV13] the alphabetic morphism was considered in an unweighted manner as g2 : Y [ Ȳ !�[ {"}.
However, this is equivalent to our notation.

77



8 Comparison of two Chomsky-Schützenberger theorems

Now consider the word w = (S(p1
)p1
)S. Clearly, w is in DY and h(w) = p1. But p1 is not in

L(G0), which can be checked by a regular language H. This language encodes the order
of nonterminal calls in its words, which depends on the productions of G0. For this, each
production p = (A! xB1 . . . Bn) (note that we can assume head normal form) is translated
into a sequence )A(Bn

. . . (B1
(a)a in the case of x = a for some a 2� and )A(Bn

. . . (B1
otherwise.

The regular language H contains all words which can be built up from these sequences.
Thereby, )A represents the call of the nonterminal from the left side of p and (Bn

. . . (B1
are

intended to make sure that the nonterminals B1, . . . , Bn are called in the further derivation.
As we consider leftmost derivations, the order of the nonterminals has to be inverted, since
the nonterminal that stands on the rightmost position of the sequence is called first. In this
context, the intersection with DY ensures that the rightmost nonterminal of such a sequence is
called next by checking that the corresponding parenthesis is closed in the following sequence.

Consider as an example the production

S! p1SB

from P 0. For the nonterminal S a parenthesis has to be closed, represented by )S , since this
nonterminal has been called by the production. The nonterminals S and B now can be called
next, represented by opening parenthesis (S and (B. As we consider a leftmost derivation,
their order has to be inverted such that (S is right of (B. Finally, the generated nonterminal
p1 is encoded by (p1

)p1
and we obtain the sequence )S(B(S(p1

)p1
. The set of all sequences

obtained from the productions of G0 in this way is denoted by R1. Additionally, there must be
an opening bracket for the call of the initial nonterminal S and therefore, H is the set

H = (SR⇤1 .

Clearly, H is regular. É

Now, where we have seen how the CFG G0 can be decomposed according to the original
CS theorem, we can compare the resulting components with the constituents obtained from
our decomposition of an (P1,�)-automaton B.

First, it is noticeable the alphabets of the regular languages R and H and, therefore, also
the domain of the mappings h2 and g2 differ. While � contains as symbols transitions of the
simple transducer M, the parenthesis alphabet Y in Y [ Ȳ is built up from nonterminals and
terminals of G0.

As this difference is due to construction, which is left open in the decomposition of G0 in
[DV13], we do not want to restrict our comparison to these dissimilar alphabets. Instead we
will show next, based on an Example, that the words in h�1

1 (B(⌦, c)) differ structurally from
Dyck words.

Example 8.11. The aim of this example is to compare the Chomsky-Schützenberger decom-
position of a context-free grammar G0 as in Example 8.10 with the decomposition of some
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"-free (P1,�)-automaton B according to Theorem 6.6 and 7.1. In particular, it is intended to
clarify how the words in h�1

1 (B(⌦, c)) differ structurally from words in DY . For this, recall

- the (P1, T )-automaton B = ({q, f }, T, ($, c), q, { f }, TB) and the alphabetic morphism
h: T ! K�disc[⌃[ {"}] from Example 5.6,

- the alphabet ⌦ and the configuration c 2 C from Example 6.8, and

- the alphabet �, the regular language R ✓ �⇤, and the letter-to letter morphisms h1 : �!
B[⌦] and h2 : �! B[T] from Example 7.2.

Furthermore, recall

- the CFG G0 = ({S, A, B}, P, S, P 0) from Example 8.9, and

- the alphabet Y [ Ȳ , the regular language H ✓ Y [ Ȳ , and the alphabetic morphism
g2 : (Y [ Ȳ )! B[P [ {"}] from Example 8.10.

Now consider the computation

✓ = (q,⌧1, bottom, q, push(B, fid))(q,⌧5, top= B, q, pop)(q,⌧7, bottom, f , stay($))

recognizing the word ⌧= ⌧1⌧5⌧7 2 T ⇤, and the derivation

d = (S! p2B)(B! p6)

generating the word p = p2p6 2 P⇤, which are compared in Example 8.9.
The element from the set h�1

1 (B(⌦, c))\ R, which is mapped by h2 to ⌧, is the word

(q, (bottom, push(B, fid)), q,⌧1)(q, (top= B, pop), q,⌧5)(q, (bottom, stay($)), f ,⌧7),

that is denoted in the following by w1. Note that also w1 2 h�1
1 (B(⌦, c)). Recall that each

symbol of � is a transition from some simple transducer M.
On the other hand, the element from DY \ H, which is mapped by g2 to p, is the word

w2 = (S)S(B(p2
)p2
)B(p6

)p6
.

Now let us compare w1 and w2. Apart from the different alphabets, we have that w1 is not
well-bracketed, which is easy to see by the fact that w1 consists of 3 symbols. This stands in
contrast to w2, which is a Dyck word. In the further we want to give some reasons for this
difference.

One problem is that it is not clear how to partition � into some parenthesis alphabets �1

and �1, to compare h�1
1 (B(⌦, c)) with DY . In Y [ Ȳ each opening parenthesis from Y can be

assigned to exactly one closing parenthesis from Ȳ – for example (S is assigned to )S . As one
approach we could take transitions of M, which contain in their input symbols instructions
pushing some element B, as opening parentheses. As corresponding closing parentheses we
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8 Comparison of two Chomsky-Schützenberger theorems

could then assign those transitions, which pop this element in their input symbol. Thus, for
example, to the opening parenthesis

(q, (bottom,push(B, fid)), q,⌧1)

the closing parenthesis
(q, (top= B, pop), q,⌧5)

could be assigned. However, the symbol B could also be pushed combined with another
predicate – we might as well choose

(q, (top= B, push(B, fid)), q,⌧6)

as opening parenthesis. Furthermore, we could imagine that there is an additional transition
with translates the input symbol (top = B, push(B, fid)) into another output symbol ⌧8. Thus,
the assignment of multiple opening parentheses to one closing parenthesis, or vice versa,
would be possible. We call this difference in the following D1.

Additionally, in the context of this approach it is not clear how to handle a transition with a
stay instruction. Such a transition could represent both – an opening parenthesis since a new
symbol is put an the pushdown, and a closing parenthesis as the previous topmost pushdown
symbol is removed. In the following we refer to this difference as D2.

A third difference is not visible in our example but has to be considered as well. In general,
the pushdown has not to be “emptied” in the end of a computation of some (P1,�)-automaton,
which means that more than one pushdown cell can be left on the pushdown. This then is
also reflected in words of the corresponding set h�1

1 (B(⌦, c)) since not all opened parenthesis
have to be closed. We call this difference in the following D3.

É

In addition to the differences D1 to D3 we want to mention an important similarity. Both
the words in h�1

1 (B(⌦, c))\ R and the words in DY \ H encode the computations, respectively
derivations, of B, respectively G0. This leads to the question whether a transformation of
B into some equivalent automaton, avoiding the mentioned problems, as for example stay
instructions, is possible. This would result in a better comparability of the sets obtained by
the respective decomposition.

In the first instance, this question can be answered positively. Thus, for example the problem
D2 can be avoided by simulating a stay(B) by pop;push(B, fid) as described in [Eng86].
Moreover it was shown in Chapter 4 that each (P1,�)-automaton B can be transformed into
some equivalent automaton B0 that empties its pushdown in the end of each computation
(apart from one last pushdown cell). This could help to obviate D3. However, in both
constructions mentioned the "-freeness required in Theorem 6.6 is not preserved.

Also the difference D1 could probably, at least partially, be avoided since in general for
pushdown automata no test of the topmost pushdown symbol before a push is needed. This
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information can be encoded into the state behaviour, compare to [Vog14, algorithm in Section
2.1.2]. However, to realize that the topmost pushdown symbol is only tested before a pop, we
would have to introduce a new predicate and therefore change the storage type P1. Moreover,
it is not clear how to handle the mentioned nondeterminism in transitions.

Despite all the differences we claim that Theorem 8.7 follows from our Theorem 7.6. We
will not give a formal proof for this claim in this thesis. However, we want to hint at the idea
of a possible construction by the following example.

Example 8.12. The aim of this example is to indicate how the decomposition in Theorem
8.7 follows from the constructions used in the proof of Theorem 7.6. As we have already
shown the similarity of the weight separation in both theorems, we will restrict ourselves in
the following to the unweighted parts. That means we will illustrate, given an alphabet ⌦
and an configuration c 2 C , an alphabet �, a regular language R ✓ �⇤ and two letter-to-letter
morphisms h1 and h2 as in Theorem 7.6, how to construct an alphabet Y [ Ȳ , a regular
language H ✓ (Y [ Ȳ )⇤ and an alphabetic morphism g2 such that

h2(h�1
1 (B(⌦, c))\ R) = g2(DY \ H).

For this, recall

- the alphabet ⌦ and the initial configuration c 2 C from Example 6.8, and

- the alphabet �, the regular language R ✓ �⇤, and the letter-to letter morphisms h1 : �!
B[⌦] and h2 : �! B[T] from Example 7.2.

Moreover, recall that the symbols of � are transitions of some simple transducer M.
The elements of the alphabet Y [ Ȳ are built up from the states, pushdown symbols in the

input symbols, and the output symbols of the transitions of M occurring in the symbols of
�. Additionally, we need a parenthesis pair {(b, )b} to represent the predicate bottom.2 This
leads to the sets

Y = {(q, ( f , (A, (B, ($, (⌧1
, . . . , (⌧7

}[ {(b}, and

Ȳ = {)q, ) f , )A, )B, )$, )⌧1
, . . . , )⌧7

}[ {)b}.

The idea behind the construction of the regular language H is very similar to the construction
in Example 8.10. Each element of � is mapped to a sequence of parentheses with the same
intention as in Example 8.10, but additionally also the input symbols of each transition,
which are elements from ⌦, have to be associated to parentheses. For this, the predicates
and instructions are handled differently as follows: each predicate top = B is represented by

2 Note that this could in general cause problems (since the predicate bottom can be simulated by a predicate
top = � if � is the current bottom symbol) and has to be handled appropriately in a formal construction. However,
since in our particular example it suffices to use these additional parentheses, we will not go into more detail.
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8 Comparison of two Chomsky-Schützenberger theorems

Table 8.1: Construction of R1 from �.

� R1

(q, (bottom,push(B, fid)), q,⌧1) )q)b(b(B(q(⌧1
)⌧1

(q, (top= A, pop, ), q,⌧2) )q)A(q(⌧2
)⌧2

(q, (top= B, push(B, fid)), q,⌧3) )q)B(B(B(q(⌧3
)⌧3

(q, (bottom, push(A, fid)), q,⌧4) )q)b(b(A(q(⌧4
)⌧4

(q, (top= B, pop, ), q,⌧5) )q)B(q(⌧5
)⌧5

(q, (top= A, push(A, fid)), q,⌧6) )q)A(A(A(q(⌧6
)⌧6

(q, (bottom, stay($)), f ,⌧7) )q)b($( f (⌧7
)⌧7

the parenthesis )B and the predicate bottom is represented by )b. On the other hand, each
instruction push(B, fid) is assigned to a parenthesis sequence (A(B, where A is the pushdown
symbol tested by the preceding predicate (or (b(B if bottom is tested), and each instruction
stay($) is represented by ($. This leads to the following set R1 as given in Table 8.1 constructed
from �. Note that in this table each parenthesis sequence of R1 stands right of the element of
� from which it is constructed.

Since each computation of M (and therefore, each word of R) starts with the initial state
q and the predicate bottom in the first transition, we have to add (b(q at the beginning of
each word over R1. Furthermore, we add ) f )$ at the end of each word over R1 since each
computation of M (respectively each word of R) ends up with a transition containing the
instruction stay($) and the final state f . Therefore, we obtain the regular language

H = (b(q R⇤1 ) f )$.

Furthermore, we define the alphabetic morphism g2 : (Y [ Ȳ )! B[T [ {"}] such that for
every a 2 Y [ Ȳ

g2(a) =

(
" if a = (x with x 2 {A, B, $, b} or a 2 Ȳ , and

x if a = (x with x 2 {⌧1 . . .⌧7} .

In order to understand the close relationship between strings in h�1
1 (B(⌦, c)) \ R and

DY \ H, consider the string ✓ from Example 7.2 together with the string w 2 DY \ H, whose
construction from ✓ we described above.

✓ = (q, (bottom, push(B, fid)), q,⌧1)(q, (top= B, pop), q,⌧5)(q, (bottom, stay(#)), f ,⌧7)

w= (b(q )q)b(b(B(q(⌧1
)⌧1

)q)B(q(⌧5
)⌧5

)q)b($( f (⌧7
)⌧7

) f )$
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The three parenthesis sequences in the middle of w, which are coloured with light gray, are
the elements in R1 constructed from the transitions of ✓ . Additionally, the sequences (b(q
and ) f )$ in dark gray are added as described above to obtain a well-bracketed word.

Furthermore, we have that

h2(✓ ) = ⌧1⌧5⌧7 = g2(w). É
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9 Conclusion

In this work we introduced automata with storage and extended this concept to weighted
automata with storage over unital valuation monoids as weight algebra.

We proved formally, that the weighted pushdown automata of [DV13] are expressively
equivalent to weighted automata with 1-iterated pushdown storage.

The main result of this work is a Chomsky-Schützenberger theorem for weighted automata
with storage. We obtained this by separating first the weight and secondly the storage from
an (S,⌃, K)-automaton.

Finally, we compared our CS result, instantiated with the 1-iterated pushdown storage,
informally with the CS theorem of [DV13].
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